Hardy spaces and divergence operators on strongly Lipschitz domains of Rn

被引:110
作者
Auscher, P [1 ]
Russ, E
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] CNRS, UMR 8628, F-91405 Orsay, France
[3] Fac Sci & Tech St Jerome, F-13397 Marseille, France
关键词
strongly Lipschitz domain; elliptic second-order operator; boundary condition; hardy spaces; maximal functions; atomic decomposition;
D O I
10.1016/S0022-1236(03)00059-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a strongly Lipschitz domain of R-n. Consider an elliptic second-order divergence operator L (including a boundary condition on partial derivativeOmega) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L-1. Under suitable assumptions on L, we identify this maximal Hardy space with H-1(R-n) if Omega = R-n, with H-r(1)(Omega) under the Dirichlet boundary condition, and with H-z(1)(Omega) under the Neumann boundary condition. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:148 / 184
页数:37
相关论文
共 27 条
[1]  
Auscher P, 2001, LECT NOTES PURE APPL, V215, P15
[2]   FUNCTIONAL-CALCULUS FOR A CLASS OF COMPLEX ELLIPTIC-OPERATORS IN DIMENSION ONE (AND APPLICATIONS TO SOME COMPLEX ELLIPTIC-EQUATIONS IN DIMENSION-2) [J].
AUSCHER, P ;
TCHAMITCHIAN, P .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (03) :721-+
[3]   Square roots of elliptic second order divergence operators on strongly Lipschitz domains:: Lp theory [J].
Auscher, P ;
Tchamitchian, P .
MATHEMATISCHE ANNALEN, 2001, 320 (03) :577-623
[4]  
AUSCHER P, UNPUB SQUARE FUNCTIO
[5]  
AUSCHER P, 1998, ASTERIQUE SOC MATH, V249
[6]   Remarks on some subspaces of BMO(Rn) and of bmo(Rn) [J].
Bourdaud, G .
ANNALES DE L INSTITUT FOURIER, 2002, 52 (04) :1187-+
[7]   THE DUAL OF HARDY-SPACES ON A BOUNDED DOMAIN IN R(N) [J].
CHANG, DC .
FORUM MATHEMATICUM, 1994, 6 (01) :65-81
[8]   H(P) THEORY ON A SMOOTH DOMAIN IN R(N) AND ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
CHANG, DC ;
KRANTZ, SG ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 114 (02) :286-347
[9]   Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in RN [J].
Chang, DC ;
Dafni, G ;
Stein, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (04) :1605-1661
[10]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335