Asymptotic stability of the complex dynamic equation uΔ - z.u+w.uσ=0

被引:3
作者
Karpuz, Basak [1 ]
机构
[1] Dokuz Eylul Univ, Fac Sci, Dept Math, TR-35160 Izmir, Turkey
关键词
Asymptotic stability; Dynamic equation; Complex exponential function; TIME SCALES;
D O I
10.1016/j.jmaa.2014.07.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide sharp conditions for the complex time scale exponential function tend to zero asymptotically. More precisely, we study the asymptotic stability of the unique complex solution u = e(z)circle minus(mu)w(.,s) of the initial value problem {u(Delta) - z center dot u + w center dot u(sigma) = 0 for t is an element of T u(s) = 1, where T is a time scale with sup T = infinity, s is an element of T. and z, w are complex constants. We also present an illustrative example to mention the sharpness of the main result. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:925 / 937
页数:13
相关论文
共 15 条
[1]  
Akin-Bohner E., 2010, Commun. Math. Anal, V9, P93
[2]  
AKINBOHNER E, 2005, J INEQUAL PURE APPL, V6
[3]  
[Anonymous], 2008, Int. J. Difference Equ.
[4]  
[Anonymous], J MATH SCI
[5]  
[Anonymous], 2009, PAN AM MATH J
[6]  
Bodine S, 2003, DYN SYST APPL, V12, P23
[7]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction With Applications, DOI [10.1007/978-1-4612-0201-1, DOI 10.1007/978-1-4612-0201-1]
[8]  
Bohner M., 2001, CUBO MAT ED, V3, P285
[9]   Properties of the Laplace transform on time scales with arbitrary graininess [J].
Bohner, Martin ;
Guseinov, Gusein Sh. ;
Karpuz, Basak .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (11) :785-800
[10]   Uniform exponential stability of first-order dynamic equations with several delays [J].
Braverman, Elena ;
Karpuz, Basak .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (21) :10468-10485