POISSON TRANSFORM FOR HIGHER-RANK GRAPH ALGEBRAS AND ITS APPLICATIONS

被引:0
作者
Skalski, Adam [1 ,2 ]
Zacharias, Joachim [3 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Lodz, Dept Math, PL-90238 Lodz, Poland
[3] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Higher-rank graphs; graph operator algebras; dilation; commutant lifting; pure states; C-ASTERISK-ALGEBRAS; CUNTZ-KRIEGER ALGEBRAS; ISOMETRIC DILATIONS; TOEPLITZ ALGEBRAS; PRODUCT SYSTEMS; REPRESENTATIONS; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Higher-rank graph generalisations of the Popescu-Poisson transform are constructed, allowing us to develop a dilation theory for higher rank operator tuples. These dilations are joint dilations of the families of operators satisfying relations encoded by the graph structure which we call Lambda-contractions or Lambda-isometries. Besides commutant lifting results and characterisations of pure states on higher rank graph algebras several applications to the structure theory of non-selfadjoint graph operator algebras are presented generalising recent results in special cases.
引用
收藏
页码:425 / 454
页数:30
相关论文
共 26 条
[1]  
[Anonymous], 1992, MONOGRAPHS MATH
[2]   Subalgebras of C*-algebras III: Multivariable operator theory [J].
Arveson, W .
ACTA MATHEMATICA, 1998, 181 (02) :159-228
[3]  
Arveson W., 1969, Acta Math, V123, P141, DOI 10.1007/BF02392388
[4]   Minimal Cuntz-Krieger dilations and representations of Cuntz-Krieger algebras [J].
Bhat, B. V. Rajarama ;
Dey, Santanu ;
Zacharias, Joachim .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (02) :193-220
[5]  
Bratteli O, 2000, J OPERAT THEOR, V43, P97
[6]   The algebraic structure of non-commutative analytic Toeplitz algebras [J].
Davidson, KR ;
Pitts, DR .
MATHEMATISCHE ANNALEN, 1998, 311 (02) :275-303
[7]  
DAVIDSON KR, J OPERATOR IN PRESS
[8]  
Dey S., 2007, Colloq. Math, V107, P141, DOI DOI 10.4064/CM107-1-12
[9]   PARTIALLY ISOMETRIC DILATIONS OF NONCOMMUTING N-TUPLES OF OPERATORS [J].
Jury, Michael T. ;
Kribs, David W. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (01) :213-222
[10]  
KRIBS DAVID W., 2006, Math. Proc. R. Ir. Acad., V106A, P199, DOI [10.1353/mpr.2006.0002.452, DOI 10.1353/MPR.2006.0002.452]