Largely tunable dispersion chirped polymer FBG

被引:37
作者
Min, Rui [1 ]
Korganbayev, Sanzhar [2 ]
Molardi, Carlo [3 ]
Broadway, Christian [4 ]
Hu, Xuehao [4 ]
Caucheteur, Christophe [4 ]
Bang, Ole [5 ,6 ]
Antunes, Paulo [7 ,8 ,9 ]
Tosi, Daniele [2 ,3 ]
Marques, Carlos [7 ,8 ,9 ]
Ortega, Beatriz [1 ]
机构
[1] Univ Politecn Valencia, ITEAM Res Inst, E-46022 Valencia, Spain
[2] Lab Biosensors & Bioinstruments, Natl Lab Astana, Astana P, Kazakhstan
[3] Nazarbayev Univ, Dept Elect & Comp Engn, Astana 010000, Kazakhstan
[4] Univ Mons, Electromagnetism & Telecommun Dept, B-7000 Mons, Belgium
[5] Tech Univ Denmark, Dept Photon Engn, DTU Foton, Aarhus, Denmark
[6] SHUTE Sensing Solut IVS, Aarhus, Denmark
[7] Inst Telecomunicacoes, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[8] Univ Aveiro, I3N, Campus Univ Santiago, P-3810193 Aveiro, Portugal
[9] Univ Aveiro, Phys Dept, Campus Univ Santiago, P-3810193 Aveiro, Portugal
关键词
FIBER BRAGG GRATINGS; OPTICAL-FIBER; ETCHED TAPERS; STRAIN; INSCRIPTION; FABRICATION; WAVELENGTH; GRADIENT;
D O I
10.1364/OL.43.005106
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a largely tunable dispersion fiber Bragg grating (FBG) inscribed in a microstructured polymer optical fiber (mPOF). The bandwidth of the chirped FBG (CFBG) was achieved from 0.11 to 4.86 nm, which corresponds to a tunable dispersion range from 513.6 to 11.15 ps/nm. Furthermore, thermal sensitivity is used to compensate for the wavelength shift due to the applied strain. These results demonstrate that a CFBG in a POF is a promising technology for future optical systems. (C) 2018 Optical Society of America
引用
收藏
页码:5106 / 5109
页数:4
相关论文
共 33 条
[1]   Microstructured polymer optical fibre sensors for opto-acoustic endoscopy [J].
Broadway, Christian ;
Gallego, Daniel ;
Pospori, Andreas ;
Zube, Michal ;
Webb, David J. ;
Sugden, Kate ;
Carpintero, Guillermo ;
Lamela, Horacio .
MICRO-STRUCTURED AND SPECIALTY OPTICAL FIBRES IV, 2016, 9886
[2]  
Candiani A, 2011, OPT LETT, V36, P2548, DOI 10.1364/OL.36.002548
[3]   A tutorial on microwave photonic filters [J].
Capmany, J ;
Ortega, B ;
Pastor, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (01) :201-229
[4]   Fiber Bragg gratings with various chirp profiles made in etched tapers [J].
Cruz, JL ;
Dong, L ;
Barcelos, S ;
Reekie, L .
APPLIED OPTICS, 1996, 35 (34) :6781-6787
[5]   FABRICATION OF CHIRPED FIBER GRATINGS USING ETCHED TAPERS [J].
DONG, L ;
CRUZ, JL ;
REEKIE, L ;
TUCKNOTT, JA .
ELECTRONICS LETTERS, 1995, 31 (11) :908-909
[6]   Fiber grating spectra [J].
Erdogan, T .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1277-1294
[7]   Multiformat Wired and Wireless Signals Over Large-Core Plastic Fibers for In-Home Network [J].
Forni, Federico ;
Shi, Y. ;
Tran, N. C. ;
van den Boom, H. P. A. ;
Tangdionggae, E. ;
Koonen, A. M. J. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (16) :3444-3452
[8]   Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating [J].
Guan, BO ;
Tam, HY ;
Tao, XM ;
Dong, XY .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (06) :675-677
[9]   Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating [J].
He, Xiaoying ;
Liu, Zhi-bo ;
Wang, D. N. .
OPTICS LETTERS, 2012, 37 (12) :2394-2396
[10]   STRAIN GRADIENT CHIRP OF FIBER BRAGG GRATINGS [J].
HILL, PC ;
EGGLETON, BJ .
ELECTRONICS LETTERS, 1994, 30 (14) :1172-1174