Quantum chaos and entanglement in ergodic and nonergodic systems

被引:42
作者
Piga, Angelo [1 ]
Lewenstein, Maciej [1 ,2 ]
Quach, James Q. [1 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fotoniq, Castelldefels 08860, Spain
[2] ICREA, Pg Lluis Companys 23, ES-08010 Barcelona, Spain
[3] Univ Adelaide, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia
关键词
METRIC INVARIANT; ENTROPY; LOCALIZATION; FUNDAMENTALS; INSTABILITY; DYNAMICS; THEOREM;
D O I
10.1103/PhysRevE.99.032213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study entanglement entropy (EE) as a signature of quantum chaos in ergodic and nonergodic systems. In particular we look at the quantum kicked top and kicked rotor as multispin systems and investigate the single-spin EE which characterizes bipartite entanglement of this spin with the rest of the system. We study the correspondence of the Kolmogorov-Sinai entropy of the classical kicked systems with the EE of their quantum counterparts. We find that EE is a signature of global chaos in ergodic systems and local chaos in nonergodic systems. In particular, we show that EE can be maximized even when systems are highly nonergodic, when the corresponding classical system is locally chaotic. In contrast, we find evidence that the quantum analog of Kolmogorov-Arnol'd-Moser (KAM) tori are tori of low entanglement entropy. We conjecture that entanglement should play an important role in any quantum KAM theory.
引用
收藏
页数:13
相关论文
共 50 条
[41]   A Brief Introduction to Stationary Quantum Chaos in Generic Systems [J].
Robnik, Marko .
NONLINEAR PHENOMENA IN COMPLEX SYSTEMS, 2020, 23 (02) :172-191
[42]   Periodically driven ergodic and many-body localized quantum systems [J].
Ponte, Pedro ;
Chandran, Anushya ;
Papic, Z. ;
Abanin, Dmitry A. .
ANNALS OF PHYSICS, 2015, 353 :196-204
[43]   Chaos and Statistical Relaxation in Quantum Systems of Interacting Particles [J].
Santos, L. F. ;
Borgonovi, F. ;
Izrailev, F. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (09)
[44]   Quantum chaos, thermalization, and entanglement generation in real-time simulations of the Banks-Fischler-Shenker-Susskind matrix model [J].
Buividovich, P., V ;
Hanada, M. ;
Schaefer, A. .
PHYSICAL REVIEW D, 2019, 99 (04)
[45]   Quantum information scrambling and entanglement in bipartite quantum states [J].
Sharma, Kapil K. ;
Gerdt, Vladimir P. .
QUANTUM INFORMATION PROCESSING, 2021, 20 (06)
[46]   Ergodic-to-nonergodic phase inversion and reentrant ergodicity transition in DNA-nanoclay dispersions [J].
Arfin, Najmul ;
Bohidar, H. B. .
SOFT MATTER, 2014, 10 (01) :149-156
[47]   Quantum entanglement [J].
Vedral, Vlatko .
NATURE PHYSICS, 2014, 10 (04) :256-258
[48]   Multifractality in Quasienergy Space of Coherent States as a Signature of Quantum Chaos [J].
Wang, Qian ;
Robnik, Marko .
ENTROPY, 2021, 23 (10)
[49]   ENTANGLEMENT OF QUANTUM SPIN SYSTEMS: A VALENCE-BOND APPROACH [J].
Capponi, Sylvain ;
Alet, Fabien ;
Mambrini, Matthieu .
MODERN PHYSICS LETTERS B, 2011, 25 (12-13) :917-928
[50]   Entanglement resonances of driven multi-partite quantum systems [J].
Sauer, Simeon ;
Mintert, Florian ;
Gneiting, Clemens ;
Buchleitner, Andreas .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (15)