Quantum chaos and entanglement in ergodic and nonergodic systems

被引:42
作者
Piga, Angelo [1 ]
Lewenstein, Maciej [1 ,2 ]
Quach, James Q. [1 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fotoniq, Castelldefels 08860, Spain
[2] ICREA, Pg Lluis Companys 23, ES-08010 Barcelona, Spain
[3] Univ Adelaide, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia
关键词
METRIC INVARIANT; ENTROPY; LOCALIZATION; FUNDAMENTALS; INSTABILITY; DYNAMICS; THEOREM;
D O I
10.1103/PhysRevE.99.032213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study entanglement entropy (EE) as a signature of quantum chaos in ergodic and nonergodic systems. In particular we look at the quantum kicked top and kicked rotor as multispin systems and investigate the single-spin EE which characterizes bipartite entanglement of this spin with the rest of the system. We study the correspondence of the Kolmogorov-Sinai entropy of the classical kicked systems with the EE of their quantum counterparts. We find that EE is a signature of global chaos in ergodic systems and local chaos in nonergodic systems. In particular, we show that EE can be maximized even when systems are highly nonergodic, when the corresponding classical system is locally chaotic. In contrast, we find evidence that the quantum analog of Kolmogorov-Arnol'd-Moser (KAM) tori are tori of low entanglement entropy. We conjecture that entanglement should play an important role in any quantum KAM theory.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Quantum coherence in ergodic and many-body localized systems [J].
Dhara, Sayandip ;
Hamma, Alioscia ;
Mucciolo, Eduardo R. .
PHYSICAL REVIEW B, 2020, 102 (04)
[32]   The Shannon-McMillan theorem for ergodic quantum lattice systems [J].
Igor Bjelaković ;
Tyll Krüger ;
Rainer Siegmund-Schultze ;
Arleta Szkoła .
Inventiones mathematicae, 2004, 155 :203-222
[33]   From ergodic to non-ergodic chaos in Rosenzweig-Porter model [J].
Pino, M. ;
Tabanera, J. ;
Serna, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (47)
[34]   Energy cost of entanglement extraction in complex quantum systems [J].
Beny, Cedric ;
Chubb, Christopher T. ;
Farrelly, Terry ;
Osborne, Tobias J. .
NATURE COMMUNICATIONS, 2018, 9
[35]   Entanglement revivals as a probe of scrambling in finite quantum systems [J].
Modak, Ranjan ;
Alba, Vincenzo ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (08)
[36]   Wehrl entropy and entanglement complexity of quantum spin systems [J].
Xu, Chen ;
Yu, Yiqi ;
Zhang, Peng .
NEW JOURNAL OF PHYSICS, 2024, 26 (12)
[37]   Quantum entanglement and disentanglement of multi-atom systems [J].
Ficek, Zbigniew .
FRONTIERS OF PHYSICS IN CHINA, 2010, 5 (01) :26-81
[38]   Entanglement and thermodynamics after a quantum quench in integrable systems [J].
Alba, Vincenzo ;
Calabrese, Pasquale .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (30) :7947-7951
[39]   Quantum Chaos: Degree of Reversibility of Quantum Dynamics of Classically Chaotic Systems [J].
Sokolov, V. V. ;
Zhirov, O. V. ;
Benenti, G. ;
Casati, G. .
TOPICS ON CHAOTIC SYSTEMS, 2009, :314-+
[40]   Ergodic and mixing quantum channels in finite dimensions [J].
Burgarth, D. ;
Chiribella, G. ;
Giovannetti, V. ;
Perinotti, P. ;
Yuasa, K. .
NEW JOURNAL OF PHYSICS, 2013, 15