Quantum chaos and entanglement in ergodic and nonergodic systems

被引:43
作者
Piga, Angelo [1 ]
Lewenstein, Maciej [1 ,2 ]
Quach, James Q. [1 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fotoniq, Castelldefels 08860, Spain
[2] ICREA, Pg Lluis Companys 23, ES-08010 Barcelona, Spain
[3] Univ Adelaide, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia
关键词
METRIC INVARIANT; ENTROPY; LOCALIZATION; FUNDAMENTALS; INSTABILITY; DYNAMICS; THEOREM;
D O I
10.1103/PhysRevE.99.032213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study entanglement entropy (EE) as a signature of quantum chaos in ergodic and nonergodic systems. In particular we look at the quantum kicked top and kicked rotor as multispin systems and investigate the single-spin EE which characterizes bipartite entanglement of this spin with the rest of the system. We study the correspondence of the Kolmogorov-Sinai entropy of the classical kicked systems with the EE of their quantum counterparts. We find that EE is a signature of global chaos in ergodic systems and local chaos in nonergodic systems. In particular, we show that EE can be maximized even when systems are highly nonergodic, when the corresponding classical system is locally chaotic. In contrast, we find evidence that the quantum analog of Kolmogorov-Arnol'd-Moser (KAM) tori are tori of low entanglement entropy. We conjecture that entanglement should play an important role in any quantum KAM theory.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Entanglement and thermodynamics in non-equilibrium isolated quantum systems [J].
Calabrese, Pasquale .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 :31-44
[22]   Operational Metric for Quantum Chaos and the Corresponding Spatiotemporal-Entanglement Structure [J].
Dowling, Neil ;
Modi, Kavan .
PRX QUANTUM, 2024, 5 (01)
[23]   Untangling entanglement and chaos [J].
Kumari, Meenu ;
Ghose, Shohini .
PHYSICAL REVIEW A, 2019, 99 (04)
[24]   A short review on entanglement in quantum spin systems [J].
Latorre, J. I. ;
Riera, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[25]   Quantum-entanglement aspects of polaron systems [J].
Stojanovic, Vladimir M. ;
Vanevic, Mihajlo .
PHYSICAL REVIEW B, 2008, 78 (21)
[26]   Ergodic billiards that are not quantum unique ergodic [J].
Hassell, Andrew ;
Hillairet, Luc .
ANNALS OF MATHEMATICS, 2010, 171 (01) :605-618
[27]   Time evolution of entanglement in open quantum systems [J].
Isar, Aurelian .
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2010, 12 (01) :68-73
[28]   Random matrix theory approach to quantum Fisher information in quantum ergodic systems [J].
Pavlov, Venelin P. ;
Chorbadzhiyska, Yoana R. ;
Nation, Charlie ;
Porras, Diego ;
Ivanov, Peter A. .
PHYSICAL REVIEW E, 2024, 110 (02)
[29]   Quantum entanglement recognition [J].
Khoo, Jun Yong ;
Heyl, Markus .
PHYSICAL REVIEW RESEARCH, 2021, 3 (03)
[30]   Engineering many-body quantum Hamiltonians with nonergodic properties using quantum Monte Carlo [J].
Swain, Nyayabanta ;
Tang, Ho-Kin ;
Foo, Darryl Chuan Wei ;
Khor, Brian J. J. ;
Lemarie, Gabriel ;
Assaad, Fakher F. ;
Sengupta, Pinaki ;
Adam, Shaffique .
PHYSICAL REVIEW B, 2025, 111 (22)