Quantum chaos and entanglement in ergodic and nonergodic systems

被引:43
作者
Piga, Angelo [1 ]
Lewenstein, Maciej [1 ,2 ]
Quach, James Q. [1 ,3 ,4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fotoniq, Castelldefels 08860, Spain
[2] ICREA, Pg Lluis Companys 23, ES-08010 Barcelona, Spain
[3] Univ Adelaide, Inst Photon & Adv Sensing, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia
关键词
METRIC INVARIANT; ENTROPY; LOCALIZATION; FUNDAMENTALS; INSTABILITY; DYNAMICS; THEOREM;
D O I
10.1103/PhysRevE.99.032213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study entanglement entropy (EE) as a signature of quantum chaos in ergodic and nonergodic systems. In particular we look at the quantum kicked top and kicked rotor as multispin systems and investigate the single-spin EE which characterizes bipartite entanglement of this spin with the rest of the system. We study the correspondence of the Kolmogorov-Sinai entropy of the classical kicked systems with the EE of their quantum counterparts. We find that EE is a signature of global chaos in ergodic systems and local chaos in nonergodic systems. In particular, we show that EE can be maximized even when systems are highly nonergodic, when the corresponding classical system is locally chaotic. In contrast, we find evidence that the quantum analog of Kolmogorov-Arnol'd-Moser (KAM) tori are tori of low entanglement entropy. We conjecture that entanglement should play an important role in any quantum KAM theory.
引用
收藏
页数:13
相关论文
共 49 条
[1]  
[Anonymous], 1990, Interdisciplinary Applied Mathematics
[2]  
Arnold V.I., 2013, MATH METHODS CLASSIC, V60
[3]   EXTENDED CHAOS AND DISAPPEARANCE OF KAM TRAJECTORIES [J].
BENSIMON, D ;
KADANOFF, LP .
PHYSICA D, 1984, 13 (1-2) :82-89
[4]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091
[5]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[6]   Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases [J].
Brandino, G. P. ;
Caux, J. -S. ;
Konik, R. M. .
PHYSICAL REVIEW X, 2015, 5 (04)
[7]   Energy level distribution of perturbed conformal field theories [J].
Brandino, G. P. ;
Konik, R. M. ;
Mussardo, G. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[8]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[9]  
Demkowicz-Dobrzanski R, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066216
[10]   Towards a quantum analog of weak KAM theory [J].
Evans, LC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 244 (02) :311-334