Stability and convergence of a Crank-Nicolson finite volume method for space fractional diffusion equations

被引:29
|
作者
Fu, Hongfei [1 ]
Sun, Yanan [1 ]
Wang, Hong [2 ]
Zheng, Xiangcheng [2 ]
机构
[1] China Univ Petr East China, Coll Sci, Qingdao 266580, Shandong, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Fractional diffusion equation; Finite volume method; Crank-Nicolson discretization; Stability and convergence; Preconditioned fast BiCGSTAB method; SPECTRAL METHOD; DIFFERENCE APPROXIMATIONS;
D O I
10.1016/j.apnum.2019.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a Crank-Nicolson finite volume method (CN-FVM) for the time-dependent two-sided conservative space fractional diffusion equation (of order 2 - alpha). We prove that the proposed method is unconditionally stable in a weighted discrete norm and has a convergence rate of order (sic)(tau(2) + h(1+alpha)), where tau and h are the time step size and spatial mesh size, respectively. In addition, we present a matrix-free preconditioned fast BiCGSTAB solver for the discrete linear algebraic system, which has a linear memory requirement and almost linear computational complexity. Numerical experiments show strong potential of the fast CN-FVM. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 51
页数:14
相关论文
共 50 条
  • [1] Stability and convergence of the Crank-Nicolson scheme for a class of variable-coefficient tempered fractional diffusion equations
    Wei Qu
    Yong Liang
    Advances in Difference Equations, 2017
  • [2] A Crank-Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on Triangular Grids
    Zhao, Jie
    Fang, Zhichao
    Li, Hong
    Liu, Yang
    MATHEMATICS, 2020, 8 (09)
  • [3] Stability and convergence of the Crank-Nicolson scheme for a class of variable-coefficient tempered fractional diffusion equations
    Qu, Wei
    Liang, Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [4] CRANK-NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS
    Lin, Xue-Lei
    Ng, Michael K.
    Sun, Hai-Wei
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (03) : 997 - 1019
  • [5] Crank-Nicolson Finite Difference Scheme for Time-Space Fractional Diffusion Equation
    Takale, Kalyanrao C.
    Sangvikar , Veena V.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 701 - 710
  • [6] On the Convergence of a Crank-Nicolson Fitted Finite Volume Method for Pricing American Bond Options
    Gan, Xiaoting
    Xu, Dengguo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [7] Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative
    Celik, Cem
    Duman, Melda
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1743 - 1750
  • [8] A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations
    Zhendong Luo
    Journal of Inequalities and Applications, 2016
  • [9] CRANK-NICOLSON SCHEME FOR TWO-DIMENSIONAL IN SPACE FRACTIONAL DIFFUSION EQUATIONS WITH FUNCTIONAL DELAY
    Ibrahim, M.
    Pimenov, V. G.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 128 - 141
  • [10] A Crank-Nicolson finite volume element method for two-dimensional Sobolev equations
    Luo, Zhendong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,