On the material symmetry group for micromorphic media with applications to granular materials

被引:22
作者
Eremeyev, Victor A. [1 ,2 ]
机构
[1] Gdansk Univ Technol, Fac Civil & Environm Engn, Ul Gabriela Narutowicza 11-12, PL-80233 Gdansk, Poland
[2] Natl Res Lobachevsky State Univ Nizhni Novgorod, Res Inst Mech, Nizhnii Novgorod, Russia
关键词
Material symmetry group; Micromorphic continuum; Subfluids; Granular materials; GRADIENT-ELASTICITY; METAMATERIALS; BEHAVIOR;
D O I
10.1016/j.mechrescom.2018.08.017
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Within the framework of the theory of nonlinear elastic micromorphic continua we introduce the new definition of the local material symmetry group. The group consists of ordered triples of second- and third-order tensors describing such changes of a reference placement that cannot be recognized with any experiment. Using the definition we characterize the micromorphic isotropic media, micromorphic fluids, solids and special intermediate cases called micromorphic subfiuids or micromorphic liquid crystals. We demonstrate that some typical behaviour of such complex media as granular materials can be described within the micromorphic subfiuids mechanics. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 12
页数:5
相关论文
共 44 条
[1]  
[Anonymous], 2010, Tensor analysis with applications in mechanics
[2]  
[Anonymous], 2017, Non-classical continuum mechanics: a dictionary
[3]  
[Anonymous], 2004, NONLINEAR FIELD THEO
[4]  
[Anonymous], 1984, RATIONAL THERMODYNAM
[5]  
[Anonymous], 1999, MICROCONTINUUM FIELD, DOI DOI 10.1007/978-1-4612-0555-5
[6]   Handbook of bi-dimensional tensors: Part I: Harmonic decomposition and symmetry classes [J].
Auffray, N. ;
Kolev, B. ;
Olive, M. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2017, 22 (09) :1847-1865
[7]   A complete description of bi-dimensional anisotropic strain-gradient elasticity [J].
Auffray, N. ;
Dirrenberger, J. ;
Rosi, G. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 69-70 :195-206
[8]   Analytical continuum mechanics a la Hamilton-Piola least action principle for second gradient continua and capillary fluids [J].
Auffray, N. ;
dell'Isola, F. ;
Eremeyev, V. A. ;
Madeo, A. ;
Rosi, G. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2015, 20 (04) :375-417
[9]   Matrix representations for 3D strain-gradient elasticity [J].
Auffray, N. ;
Le Quang, H. ;
He, Q. C. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (05) :1202-1223
[10]  
Bertram Albrecht., 2017, Compendium on gradient materials