Cost and emissions pathways towards net-zero climate impacts in aviation

被引:95
|
作者
Dray, Lynnette [1 ]
Schafer, Andreas W. [1 ]
Grobler, Carla [2 ]
Falter, Christoph [2 ]
Allroggen, Florian [2 ]
Stettler, Marc E. J. [3 ]
Barrett, Steven R. H. [2 ]
机构
[1] UCL, Sch Environm Energy & Resources, Air Transportat Syst Lab, London, England
[2] MIT, Dept Aeronaut & Astronaut, Lab Aviat & Environm, Cambridge, MA 02139 USA
[3] Imperial Coll London, Dept Civil & Environm Engn, London, England
基金
英国工程与自然科学研究理事会;
关键词
SOCIAL COST; JET FUEL; CONTRAILS; TECHNOLOGY; SYSTEMS; DIESEL;
D O I
10.1038/s41558-022-01485-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aviation emissions are not on a trajectory consistent with Paris Climate Agreement goals. We evaluate the extent to which fuel pathways-synthetic fuels from biomass, synthetic fuels from green hydrogen and atmospheric CO2, and the direct use of green liquid hydrogen-could lead aviation towards net-zero climate impacts. Together with continued efficiency gains and contrail avoidance, but without offsets, such an energy transition could reduce lifecycle aviation CO2 emissions by 89-94% compared with year-2019 levels, despite a 2-3-fold growth in demand by 2050. The aviation sector could manage the associated cost increases, with ticket prices rising by no more than 15% compared with a no-intervention baseline leading to demand suppression of less than 14%. These pathways will require discounted investments on the order of US$0.5-2.1 trillion over a 30 yr period. However, our pathways reduce aviation CO2-equivalent emissions by only 46-69%; more action is required to mitigate non-CO2 impacts.
引用
收藏
页码:956 / +
页数:21
相关论文
empty
未找到相关数据