Infinitely many positive solutions for a differential inclusion problem involving the p(x)-Laplacian

被引:3
作者
Ge Bin [1 ]
Zhou QingMei [2 ]
机构
[1] Harbin Engn Univ, Dept Appl Math, Harbin 150001, Peoples R China
[2] NE Forestry Univ, Harbin 150040, Peoples R China
基金
中国博士后科学基金;
关键词
p(x)-Laplacian; locally Lipschitz function; oscillatory nonlinearities; differential inclusion; variational principle; msc (2010) 35J20; 35J70; 35R20; VARIABLE EXPONENT; ELECTRORHEOLOGICAL FLUIDS; NONSTANDARD GROWTH; SOBOLEV EMBEDDINGS; FUNCTIONALS; EQUATIONS; SPACE;
D O I
10.1002/mana.201000048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a differential inclusion problem involving p(x)-Laplacian. By nonsmooth variational methods and the theory of the variable exponent Sobolev spaces, we establish the existence of infinitely many positive solutions of the problem under suitable oscillatory assumptions on the potential j at zero or at infinity.
引用
收藏
页码:1303 / 1315
页数:13
相关论文
共 28 条
[21]   Overview of differential equations with non-standard growth [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Le, Ut V. ;
Nuortio, Matti .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4551-4574
[22]   Nonsmooth critical point theory and nonlinear elliptic equations at resonance [J].
Kourogenis, NC ;
Papageorgiou, NS .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 69 :245-271
[23]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[24]   EVERY SUPERPOSITION OPERATOR MAPPING ONE SOBOLEV SPACE INTO ANOTHER IS CONTINUOUS [J].
MARCUS, M ;
MIZEL, VJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 33 (02) :217-229
[25]   A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids [J].
Mihailescu, Mihai ;
Radulescu, Vicentiu .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2073) :2625-2641
[26]   Existence and multiplicity of solutions for p(x)-Laplacian equation with nonsmooth potential [J].
Qian, Chenyin ;
Shen, Zifei .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :106-116
[27]  
Ruzicka, 2000, ELECTRORHEOLOGICAL F
[28]   Solutions for a class of hemivariational inequalities with p(x)-Laplacian [J].
Zhang, Xia ;
Fu, Yongqiang .
ANNALES POLONICI MATHEMATICI, 2009, 95 (03) :273-288