Infinitely many positive solutions for a differential inclusion problem involving the p(x)-Laplacian

被引:3
作者
Ge Bin [1 ]
Zhou QingMei [2 ]
机构
[1] Harbin Engn Univ, Dept Appl Math, Harbin 150001, Peoples R China
[2] NE Forestry Univ, Harbin 150040, Peoples R China
基金
中国博士后科学基金;
关键词
p(x)-Laplacian; locally Lipschitz function; oscillatory nonlinearities; differential inclusion; variational principle; msc (2010) 35J20; 35J70; 35R20; VARIABLE EXPONENT; ELECTRORHEOLOGICAL FLUIDS; NONSTANDARD GROWTH; SOBOLEV EMBEDDINGS; FUNCTIONALS; EQUATIONS; SPACE;
D O I
10.1002/mana.201000048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a differential inclusion problem involving p(x)-Laplacian. By nonsmooth variational methods and the theory of the variable exponent Sobolev spaces, we establish the existence of infinitely many positive solutions of the problem under suitable oscillatory assumptions on the potential j at zero or at infinity.
引用
收藏
页码:1303 / 1315
页数:13
相关论文
共 28 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]  
[Anonymous], 2012, Homogenization of differential operators and integral functionals
[4]  
[Anonymous], MATH USSR
[5]  
[Anonymous], 1998, J. Gansu Educ. Coll
[6]  
[Anonymous], 2002, THESIS U FRIEBURG GE
[7]  
Antontsev S.N., 2006, Ann. Univ. Ferrara. Sez., VVII, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
[8]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[9]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[10]  
Clarke H., 1993, Vikingastader