Modeling cell rheology with the Subcellular Element Model

被引:95
作者
Sandersius, Sebastian A. [1 ]
Newman, Timothy J. [1 ,2 ]
机构
[1] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA
关键词
D O I
10.1088/1478-3975/5/1/015002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, the Subcellular Element Model (SEM) has been introduced, primarily to compute the dynamics of large numbers of three-dimensional deformable cells in multicellular systems. Within this model framework, each cell is represented by a collection of elastically coupled elements, interacting with one another via short-range potentials, and dynamically updated using over-damped Langevin dynamics. The SEM can also be used to represent a single cell in more detail, by using a larger number of subcellular elements exclusively identified with that cell. We have tested whether, in this context, the SEM yields viscoelastic properties consistent with those measured on single living cells. Employing virtual methods of bulk rheology and microrheology we find that the SEM successfully captures many cellular rheological properties at intermediate time scales and moderate strains, including weak power law rheology. In its simplest guise, the SEM cannot describe long-time/large-strain cell responses. Capturing these cellular properties requires extensions of the SEM which incorporate active cytoskeletal rearrangement. Such extensions will be the subject of a future publication.
引用
收藏
页数:13
相关论文
共 23 条
[1]  
[Anonymous], RHEOL BIOL SYST
[2]   Power laws in microrheology experiments on living cells:: Comparative analysis and modeling [J].
Balland, Martial ;
Desprat, Nicolas ;
Icard, Delphine ;
Fereol, Sophie ;
Asnacios, Atef ;
Browaeys, Julien ;
Henon, Sylvie ;
Gallet, Francois .
PHYSICAL REVIEW E, 2006, 74 (02)
[3]   Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry [J].
Bausch, AR ;
Ziemann, F ;
Boulbitch, AA ;
Jacobson, K ;
Sackmann, E .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2038-2049
[4]   Fast and slow dynamics of the cytoskeleton [J].
Deng, Linhong ;
Trepat, Xavier ;
Butler, James P. ;
Millet, Emil ;
Morgan, Kathleen G. ;
Weitz, David A. ;
Fredberg, Jeffrey J. .
NATURE MATERIALS, 2006, 5 (08) :636-640
[5]   Creep function of a single living cell [J].
Desprat, N ;
Richert, A ;
Simeon, J ;
Asnacios, A .
BIOPHYSICAL JOURNAL, 2005, 88 (03) :2224-2233
[6]   A master relation defines the nonlinear viscoelasticity of single fibroblasts [J].
Fernández, P ;
Pullarkat, PA ;
Ott, A .
BIOPHYSICAL JOURNAL, 2006, 90 (10) :3796-3805
[7]  
Findley W.N., 1976, CREEP RELAXATION NON, P50
[8]   The consensus mechanics of cultured mammalian cells [J].
Hoffman, Brenton D. ;
Massiera, Gladys ;
Van Citters, Kathleen M. ;
Crocker, John C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (27) :10259-10264
[9]   Mechanical control of tissue morphogenesis during embryological development [J].
Ingber, DE .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2006, 50 (2-3) :255-266
[10]   PHYSICS OF THE GRANULAR STATE [J].
JAEGER, HM ;
NAGEL, SR .
SCIENCE, 1992, 255 (5051) :1523-1531