Research on improved algorithm of object detection based on feature pyramid
被引:13
|
作者:
Qin, Pinle
论文数: 0引用数: 0
h-index: 0
机构:
North Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R ChinaNorth Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
Qin, Pinle
[1
]
Li, Chuanpeng
论文数: 0引用数: 0
h-index: 0
机构:
North Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R ChinaNorth Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
Li, Chuanpeng
[1
]
Chen, Jun
论文数: 0引用数: 0
h-index: 0
机构:
North Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R ChinaNorth Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
Chen, Jun
[1
]
Chai, Rui
论文数: 0引用数: 0
h-index: 0
机构:
North Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R ChinaNorth Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
Chai, Rui
[1
]
机构:
[1] North Univ China, Sch Data Sci & Technol, Taiyuan 030051, Shanxi, Peoples R China
To solve the low detection accuracy of SSD for the small size object, this paper proposed an improved algorithm of SSD object detection based on the feature pyramid (FP-SSD). In the deep convolutional neural network, the high-level features contain well semantic information but are not sensitive to the translations. The low-level features have high resolutions but could not represent the features well. The feature pyramid structure contains multi-scale features. To combine the high and low-level features of the pyramid, the algorithm of this paper applied the deconvolution network to the high-level features of the feature pyramid to get the semantic information, dilated convolution network to learn the position information of the low-level features and used convolution for the middle level features to reduce the feature channels, then used convolution to fuse the features. After using the algorithm, a multi-scale detection structure is constructed. FP-SSD achieves a mean accuracy of 79% on PASCAL VOC2007, and 47% on MSCOCO, which has a great improve compared with SSD. We compared the detection accuracy and results with all kinds of scales by experiments, compared with SSD, the accuracy of FP-SSD is higher, which has more accurate location and higher recognition confidence.
机构:
Univ Teknol Malaysia UTM, Sch Comp, Div Art Intelligence, Fac Engn, Skudai 81310, Kagawa, MalaysiaUniv Teknol Malaysia UTM, Sch Comp, Div Art Intelligence, Fac Engn, Skudai 81310, Kagawa, Malaysia
Salam, Md Sah Bin Haji
Sheikh, Usman Ullah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Teknol Malaysia UTM, Sch Elect Engn, Fac Engn, Skudai 81310, Kagawa, MalaysiaUniv Teknol Malaysia UTM, Sch Comp, Div Art Intelligence, Fac Engn, Skudai 81310, Kagawa, Malaysia
Sheikh, Usman Ullah
Khan, Surat
论文数: 0引用数: 0
h-index: 0
机构:
Balochistan Univ Informat Technol Engn & Manageme, Fac Informat & Commun Technol, Dept Elect Engn, Quetta 87300, PakistanUniv Teknol Malaysia UTM, Sch Comp, Div Art Intelligence, Fac Engn, Skudai 81310, Kagawa, Malaysia
Khan, Surat
Ayub, Huma
论文数: 0引用数: 0
h-index: 0
机构:
Sardar Bahadur Khan Woman Univ, Dept Chem & Technol, Quetta 86301, PakistanUniv Teknol Malaysia UTM, Sch Comp, Div Art Intelligence, Fac Engn, Skudai 81310, Kagawa, Malaysia
Ayub, Huma
Ayub, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Balochistan Univ Informat Technol Engn & Manageme, Fac Informat & Commun Technol, Dept Elect Engn, Quetta 87300, PakistanUniv Teknol Malaysia UTM, Sch Comp, Div Art Intelligence, Fac Engn, Skudai 81310, Kagawa, Malaysia
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R China
Guo, Zebin
Shuai, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R China
Shuai, Hui
Liu, Guangcan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R China
Liu, Guangcan
Zhu, Yisheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R China
Zhu, Yisheng
Wang, Wenqing
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R ChinaNanjing Univ Informat Sci & Technol, Jiangsu Key Lab Big Data Anal Technol B DAT, Automat, Nanjing, Peoples R China
机构:
Chinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R China
Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R ChinaChinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R China
Zhang, Zhiqiang
Qiu, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R China
Qiu, Xin
Li, Yongzhou
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R ChinaChinese Acad Sci, Inst Microelect, 3 Beitucheng West Rd, Beijing 100029, Peoples R China
机构:
Northeast Elect Power Univ, Minist Educ, Key Lab Modern Power Syst Simulat & Control & Ren, Jilin 132012, Jilin, Peoples R ChinaNortheast Elect Power Univ, Minist Educ, Key Lab Modern Power Syst Simulat & Control & Ren, Jilin 132012, Jilin, Peoples R China
Zhao, Liquan
Li, Shuaiyang
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Elect Power Univ, Minist Educ, Key Lab Modern Power Syst Simulat & Control & Ren, Jilin 132012, Jilin, Peoples R ChinaNortheast Elect Power Univ, Minist Educ, Key Lab Modern Power Syst Simulat & Control & Ren, Jilin 132012, Jilin, Peoples R China