Reversal of Simple Hydrogenic Isotope Scaling Laws in Tokamak Edge Turbulence

被引:42
作者
Belli, E. A. [1 ]
Candy, J. [1 ]
Waltz, R. E. [1 ]
机构
[1] Gen Atom, POB 85608, San Diego, CA 92186 USA
关键词
EQUATIONS; ELECTRON; CONFINEMENT;
D O I
10.1103/PhysRevLett.125.015001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The role of nonadiabatic electrons in regulating the hydrogenic isotope-mass scaling of gyrokinetic turbulence in tokamak fusion plasmas is assessed in the transition from ion-dominated core transport regimes to electron-dominated edge transport regimes. We propose a new isotope-mass scaling law that describes the electron-to-ion mass-ratio dependence of turbulent ion and electron energy fluxes. The massratio dependence arises from the nonadiabatic response associated with fast electron parallel motion and plays a key role in altering-and in the case of the DIII-D edge, favorably reversing-the naive gyro-Bohm scaling behavior. In the reversed regime hydrogen energy fluxes are larger than deuterium fluxes, which is the opposite of the naive prediction.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Dependence of the turbulent particle flux on hydrogen isotopes induced by collisionality
    Angioni, C.
    Fable, E.
    Manas, P.
    Mantica, P.
    Schneider, P. A.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    Bacharis, M.
    Baciero, A.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (08)
  • [2] Bounce averaged trapped electron fluid equations for plasma turbulence
    Beer, MA
    Hammett, GW
    [J]. PHYSICS OF PLASMAS, 1996, 3 (11) : 4018 - 4022
  • [3] Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive
    Belli, E. A.
    Candy, J.
    Waltz, R. E.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (08)
  • [4] THE ISOTOPE EFFECT IN ASDEX
    BESSENRODTWEBERPALS, M
    WAGNER, F
    [J]. NUCLEAR FUSION, 1993, 33 (08) : 1205 - 1238
  • [5] Progress toward ITER's First Plasma
    Bigot, B.
    [J]. NUCLEAR FUSION, 2019, 59 (11)
  • [6] Microturbulence study of the isotope effect
    Bustos, A.
    Navarro, A. Banon
    Goerler, T.
    Jenko, F.
    Hidalgo, C.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (01)
  • [7] A high-accuracy Euleriangyrokinetic solver for collisional plasmas
    Candy, J.
    Belli, E. A.
    Bravenec, R. V.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 : 73 - 93
  • [8] Tokamak profile prediction using direct gyrokinetic and neoclassical simulation
    Candy, J.
    Holland, C.
    Waltz, R. E.
    Fahey, M. R.
    Belli, E.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (06)
  • [9] A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations
    Chen, Y
    Parker, S
    [J]. PHYSICS OF PLASMAS, 2001, 8 (02) : 441 - 446
  • [10] NON-LINEAR GYROKINETIC EQUATIONS FOR LOW-FREQUENCY ELECTROMAGNETIC-WAVES IN GENERAL PLASMA EQUILIBRIA
    FRIEMAN, EA
    CHEN, L
    [J]. PHYSICS OF FLUIDS, 1982, 25 (03) : 502 - 508