A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities

被引:122
|
作者
Zhang, Jinhao [1 ]
Xiao, Mi [1 ]
Gao, Liang [1 ]
Chu, Sheng [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive importance sampling; Projection-outline-based active learning; Hybrid reliability analysis; Small failure probabilities; Kriging; OPTIMIZATION; SIMULATION; METAMODEL; DESIGN;
D O I
10.1016/j.cma.2018.10.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the adaptive importance sampling (AIS) method is extended for hybrid reliability analysis under random and interval variables (HRA-RI) with small failure probabilities. In AIS, the design space is divided into random and interval variable subspaces. In random variable subspace, Markov Chain Monte Carlo (MCMC) is employed to generate samples which populate the failure regions. Then based on these samples, two kernel sampling density functions are established for estimations of the lower and upper bounds of failure probability. To improve the computational efficiency of AIS in cases with time-consuming performance functions, a combination method of projection-outline-based active learning Kriging and AIS, termed as POALK-AIS, is proposed in this paper. In this method, design of experiments is sequentially updated for the construction of Kriging metamodel with focus on the approximation accuracy of the projection outlines on the limit-state surface. During the procedure of POALK-AIS, multiple groups of sample points simulated by AIS are used to calculate the upper and lower bounds of failure probability. The accuracy, efficiency and robustness of POALK-AIS for HRA-RI with small failure probabilities are verified by five test examples. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 33
页数:21
相关论文
共 50 条
  • [41] A new structural reliability analysis method based on PC-Kriging and adaptive sampling region
    Yu, Zhenliang
    Sun, Zhili
    Guo, Fanyi
    Cao, Runan
    Wang, Jian
    STRUCTURAL ENGINEERING AND MECHANICS, 2022, 82 (03) : 271 - 282
  • [42] RCA-PCK: A new structural reliability analysis method based on PC-Kriging and radial centralized adaptive sampling strategy
    Yu, Zhenliang
    Sun, Zhili
    Cao, Runan
    Wang, Jian
    Yan, Yutao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2021, 235 (17) : 3424 - 3438
  • [43] An efficient method by nesting adaptive Kriging into Importance Sampling for failure-probability-based global sensitivity analysis
    Lei, Jingyu
    Lu, Zhenzhou
    Wang, Lu
    ENGINEERING WITH COMPUTERS, 2022, 38 (04) : 3595 - 3610
  • [44] BUAK-AIS: Efficient Bayesian Updating with Active learning Kriging-based Adaptive Importance Sampling
    Song, Chaolin
    Wang, Zeyu
    Shafieezadeh, Abdollah
    Xiao, Rucheng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [45] Global reliability sensitivity analysis by Sobol-based dynamic adaptive kriging importance sampling
    Cadini, Francesco
    Lombardo, Simone Salvatore
    Giglio, Marco
    STRUCTURAL SAFETY, 2020, 87
  • [46] An active learning Kriging-based multipoint sampling strategy for structural reliability analysis
    Tian, Zongrui
    Zhi, Pengpeng
    Guan, Yi
    He, Xinghua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (01) : 524 - 549
  • [47] An adaptive Kriging method based on K-means clustering and sampling in n-ball for structural reliability analysis
    Wang, Jinsheng
    Cao, Zhiyang
    Xu, Guoji
    Yang, Jian
    Kareem, Ahsan
    ENGINEERING COMPUTATIONS, 2023, 40 (02) : 378 - 410
  • [48] A system reliability analysis method combining active learning Kriging model with adaptive size of candidate points
    Yang, Xufeng
    Mi, Caiying
    Deng, Dingyuan
    Liu, Yongshou
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (01) : 137 - 150
  • [49] Compound kriging-based importance sampling for reliability analysis of systems with multiple failure modes
    Ling, Chunyan
    Lu, Zhenzhou
    ENGINEERING OPTIMIZATION, 2022, 54 (05) : 805 - 829
  • [50] A Kriging-assisted two-stage adaptive radial-based importance sampling method for random-interval hybrid reliability analysis
    Zhao, Zhao
    Lu, Zhao-Hui
    Zhao, Yan-Gang
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (06)