A 3D-QSAR-Driven Approach to Binding Mode and Affinity Prediction

被引:35
|
作者
Tosco, Paolo [1 ]
Balle, Thomas [2 ]
机构
[1] Univ Turin, Dept Drug Sci & Technol, I-10125 Turin, Italy
[2] Univ Copenhagen, Dept Med Chem, Fac Pharmaceut Sci, DK-2100 Copenhagen, Denmark
关键词
LIGANDS; TOOL; MOLECULES; ALIGNMENT; PROTEINS; COMPASS; DESIGN; SHAPE;
D O I
10.1021/ci200411s
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
A method for predicting the binding mode of a series of ligands is proposed. The procedure relies on three-dimensional quantitative structure activity relationships (3D-QSAR) and does not require structural knowledge of the binding site. Candidate alignments are automatically built and ranked according to a consensus scoring function. 3D-QSAR analysis based on the selected binding mode enables affinity prediction of new drug candidates having less than 10 rotatable bonds.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 50 条
  • [1] 2D and 3D QSAR Studies of the Receptor Binding Affinity of Progestins
    Veras, Lea da Silva
    Arakawa, Masamoto
    Funatsu, Kimito
    Takahata, Yuji
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2010, 21 (05) : 872 - 881
  • [2] In silico prediction of estrogen receptor subtype binding affinity and selectivity using 3D-QSAR and molecular docking
    Jiang, Wenliang
    Chen, Qinghua
    Zhou, Bo
    Wang, Fangfang
    MEDICINAL CHEMISTRY RESEARCH, 2019, 28 (11) : 1974 - 1994
  • [3] Comprehensive 3D-QSAR and Binding Mode of DAPY Inhibitors Using R-group Search and Molecular Docking
    Tong Jian-Bo
    Wang Yang
    Lei Shan
    Qin Shang-Shang
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2019, 38 (01) : 25 - 36
  • [4] Use of 3D QSAR to investigate the mode of binding of pyrazinones to HIV-1 RT
    Saparpakorn, Patchreenart
    Thammaporn, Ratsupa
    Hannongbua, Supa
    MONATSHEFTE FUR CHEMIE, 2009, 140 (06): : 587 - 594
  • [5] Mixed-model QSAR at the human mineralocorticoid receptor: Predicting binding mode and affinity of anabolic steroids
    Peristera, Ourania
    Spreafico, Morena
    Smiesko, Martin
    Ernst, Beat
    Vedani, Angelo
    TOXICOLOGY LETTERS, 2009, 189 (03) : 219 - 224
  • [6] Pharmacophore modeling, comprehensive 3D-QSAR, and binding mode analysis of TGR5 agonists
    Sindhu, Thangaraj
    Srinivasan, Pappu
    JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2017, 37 (02) : 109 - 123
  • [7] Predicting Isoform-specific Binding Selectivities of Benzensulfonamides Using QSAR and 3D-QSAR
    Raskevicius, Vytautas
    Kairys, Visvaldas
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2017, 13 (01) : 75 - 83
  • [8] ChemBoost: A Chemical Language Based Approach for Protein - Ligand Binding Affinity Prediction
    Ozcelik, Riza
    Ozturk, Hakime
    Ozgur, Arzucan
    Ozkirimli, Elif
    MOLECULAR INFORMATICS, 2021, 40 (05)
  • [9] KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks
    Jimenez, Jose
    Skalic, Miha
    Martinez-Rosell, Gerard
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (02) : 287 - 296
  • [10] Gaussian Process: A Promising Approach for the Modeling and Prediction of Peptide Binding Affinity to MHC Proteins
    Ren, Yanrong
    Chen, Xiaolin
    Feng, Ming
    Wang, Qiang
    Zhou, Peng
    PROTEIN AND PEPTIDE LETTERS, 2011, 18 (07) : 670 - 678