Fluorescence-based implantable biosensors:: Monte Carlo modeling for optical probe design

被引:0
作者
McShane, M [1 ]
Rastegar, S [1 ]
Coté, G [1 ]
机构
[1] Texas A&M Univ, Biomed Engn Program, College Stn, TX 77843 USA
来源
PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND | 1998年 / 20卷
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Implantable fluorescent sensors may be an attractive solution to the monitoring of many parameters of biomedical interest. A Monte Carlo simulation of photon propagation through human shin and interaction with a subcutaneous fluorescent sensing layer is presented. Results me analyzed with respect to output light intensity as a function of distance from source, input-to-output characteristics; and single-photon versus dual-photon excitation The results indicate that radial fluorescence emission profile is broad compared to the diffusely reflected input Light. Response intensity has an approximately logarithmic relationship with sensor thickness. Estimated values for tissue autofluorescence quantum yield lead to an approximately Inverse relationship between sensor signal-to-noise ratio. One-photon excitation exhibits higher per-photon yield than two-photon excitation.
引用
收藏
页码:1799 / 1802
页数:4
相关论文
共 50 条
[21]   Design of Fiber-Optics Probe Based on Monte-Carlo Simulation and Application of the Probe in Fluorescence Spectrum Measurement of Nicotinamide Adenine Dinucleotide in Skin [J].
Yang Ming ;
Sun Quanchang ;
Hou Huayi .
LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
[22]   Materials for fluorescence-based optical chemical sensors [J].
Wolfbeis, OS .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (27-28) :2657-2669
[23]   Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation [J].
Vali, Zahra ;
Gholami, Asghar ;
Ghassemlooy, Zabih ;
Michelson, David G. ;
Omoomi, Masood ;
Noori, Hamed .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (07) :1187-1193
[24]   A methodology on time-domain fluorescence diffuse optical tomography based on GPU-accelerated Monte-Carlo modeling [J].
Yi, Xi ;
Wu, Linhui ;
Wang, Xin ;
Chen, Weiting ;
Zhang, Limin ;
Zhao, Huijuan ;
Gao, Feng .
Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40 (05)
[25]   Monte Carlo modeling of the IBAD growth of the optical films [J].
Oleszkiewicz, W ;
Romiszowski, P .
VACUUM, 2001, 63 (04) :613-617
[26]   Monte Carlo modeling of angiographic optical coherence tomography [J].
Hartinger, Alzbeta E. ;
Nam, Ahhyun S. ;
Chico-Calero, Isabel ;
Vakoc, Benjamin J. .
BIOMEDICAL OPTICS EXPRESS, 2014, 5 (12) :4338-4349
[27]   Monte Carlo modeling of optical coherence tomography systems [J].
Frosz, MH ;
Jorgensen, TM ;
Tycho, A ;
Thrane, L ;
Yura, HT ;
Andersen, PE .
COHERENCE DOMAIN OPTICAL METHODS AND OPTICAL COHERENCE TOMOGRAPHY IN BIOMEDICINE VIII, 2004, 5316 :214-219
[28]   Novel fiber-optic probe design for depth-resolved fluorescence measurements: Monte Carlo simulations [J].
Jaillon, Franck ;
Zheng, Wei ;
Huang, Zhiwei .
OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS III, 2008, 6826
[29]   Optimization of the conical mirror design based on Monte Carlo simulations for fluorescence molecular tomography [J].
Zhao, Yue ;
Zhang, Wei ;
Li, Changqing .
MULTIMODAL BIOMEDICAL IMAGING XIII, 2018, 10487
[30]   A Near-Infrared Fluorescence-Based Optical Thermosensor [J].
Lee, Seung-Young ;
Lee, Seulki ;
Youn, In-Chan ;
Yi, Dong Kee ;
Lim, Yong Taik ;
Chung, Bong Hyun ;
Leary, James F. ;
Kwon, Ick Chan ;
Kim, Kwangmeyung ;
Choi, Kuiwon .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (25) :6103-6106