A singular large deviations phenomenon

被引:24
作者
Gradinaru, M [1 ]
Herrmann, S [1 ]
Roynette, B [1 ]
机构
[1] Univ Henri Poincare, Inst Math Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2001年 / 37卷 / 05期
关键词
large deviations; small random perturbation; Brownian bridge; viscosity solution; Hamilton-Jacobi equation;
D O I
10.1016/S0246-0203(01)01075-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider {X-t(epsilon): t greater than or equal to 0} (epsilon > 0), the solution starting from 0 of a stochastic differential equation, which is a small Brownian perturbation of the one-dimensional ordinary differential equation x(t)' = sgn(x(t))\x(t)\(gamma) (0 < <gamma> < 1). Denote by p(t)(epsilon)(x) the density of X-t(epsilon). We study the exponential decay of the density as epsilon --> 0. We prove that, for the points (t, x) lying between the extremal solutions of the ordinary differential equation, the rate of the convergence is different from the rate of convergence in large deviations theory (although respected for the points (t, x) which does not lie between the extremals). Proofs are based on probabilistic (large deviations theory) and analytic (viscosity solutions for Hamilton-Jacobi equations) tools. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:555 / 580
页数:26
相关论文
共 16 条
[1]  
Bafico R., 1982, Stochastics, V6, P279, DOI DOI 10.1080/17442508208833208
[2]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[3]   REGULARITY PROPERTIES OF SCHRODINGER AND DIRICHLET SEMIGROUPS [J].
CARMONA, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 33 (03) :259-296
[4]   ULTRACONTRACTIVITY AND THE HEAT KERNEL FOR SCHRODINGER-OPERATORS AND DIRICHLET LAPLACIANS [J].
DAVIES, EB ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 59 (02) :335-395
[5]  
DAVIES EB, 1973, J LOND MATH SOC, V7, P483
[6]  
DAVIES EB, 1980, 1 PARAMETER SEMIGROU
[7]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[8]  
FLEMING W. H., 2005, Stochastic Modelling and Applied Probability, V2nd
[9]  
HERRMANN S, 2001, THESIS U H POINCARE
[10]  
Kac M., 1951, P 2 BERK S MATH STAT, P189