Post-retrieval search hit clustering to improve information retrieval effectiveness: Two digital forensics case studies

被引:27
作者
Beebe, Nicole Lang [1 ]
Clark, Jan Guynes [1 ]
Dietrich, Glenn B. [1 ]
Ko, Myung S. [1 ]
Ko, Daijin [2 ]
机构
[1] Univ Texas San Antonio, Dept Informat Syst & Technol Management, San Antonio, TX USA
[2] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX USA
关键词
Digital forensics; Clustering; Information retrieval; Self-organizing map; Text string search;
D O I
10.1016/j.dss.2011.01.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research extends text mining and information retrieval research to the digital forensic text string search process. Specifically, we used a self-organizing neural network (a Kohonen Self-Organizing Map) to conceptually cluster search hits retrieved during a real-world digital forensic investigation. We measured information retrieval effectiveness (e.g., precision, recall, and overhead) of the new approach and compared them against the current approach. The empirical results indicate that the clustering process significantly reduces information retrieval overhead of the digital forensic text string search process, which is currently a very burdensome endeavor. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:732 / 744
页数:13
相关论文
共 54 条
[1]  
Alink W., 2006, DIGITAL INVESTIGATIO, V3
[2]  
[Anonymous], 2001, Proceedings of the 2001 Digital Forensics Research Workshop (DFRWS 2004)
[3]  
Beebe N.L., 2007, DIGIT INVEST, V4, pS1
[4]  
Beebe N.L., 2007, RES ADV DIGITAL FORE
[5]  
BERGLUND E, 2003, P 8 AUSTR NZ INT INF
[6]  
Casey E., 2004, DIGIT INVEST, V1, P2004
[7]  
Chen H., 2001, J AM SOC INFORM SCI, V52, P13
[8]  
Chen H., 1998, J AM SOC INFORM SCI, V49, P7
[9]  
Chen H., 1996, J VISUAL COMMUNICATI, V7
[10]  
Chen H., 1992, IEEE T SYST MAN CYB, V22, P5