A General Inequality for Pointwise Semi-Slant Warped Products in Nearly Kenmotsu Manifolds

被引:0
作者
Uddin, Siraj [1 ]
Altalhi, Ashwaq [1 ]
Alluhaibi, Nadia [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] King Abdulaziz Univ, Sci & Arts Coll, Dept Math, Rabigh Campus, Jeddah 21911, Saudi Arabia
关键词
warped products; slant; pointwise semi-slant submanifolds; nearly Kenmotsu manifolds; KAEHLER MANIFOLDS; CR-SUBMANIFOLDS; GEOMETRY;
D O I
10.2298/FIL2201221U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that every pointwise semi-slant warped product submanifold M = N-T X-f N-theta in a nearly Kenmotsu manifold (M) over tilde satisfies the following inequality: parallel to h parallel to(2) >= 2n(2) (1 + 10/9 cot(2) theta) (parallel to(del) over cap (ln f)parallel to(2) - 1) , where n(2) = dim N-theta, (del) over cap (In f) is the gradient of In f and parallel to h parallel to is the length of the second fundamental form of M. The equality and special cases of the inequality are investigated.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 44 条
[11]   GEOMETRY OF POINTWISE CR-SLANT WARPED PRODUCTS IN KAEHLER MANIFOLDS [J].
Chen, Bang-Yen ;
Uddin, Siraj ;
Al-Solamy, Falleh R. .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (02) :353-365
[12]   Warped product pointwise bi-slant submanifolds of Kaehler manifolds [J].
Chen, Bang-Yen ;
Uddin, Siraj .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2) :183-199
[13]   Pointwise slant submanifolds in almost Hermitian manifolds [J].
Chen, Bang-Yen ;
Garay, Oscar J. .
TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (04) :630-640
[14]  
Chen Bang-Yen, 2013, J. Adv. Math. Stud., V6, P1
[15]   SLANT IMMERSIONS [J].
CHEN, BY .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (01) :135-147
[16]   Geometry of warped product CR-submanifolds in Kaehler manifolds, II [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02) :103-119
[17]   Geometry of warped product CR-submanifolds in Kaehler manifolds [J].
Chen, BY .
MONATSHEFTE FUR MATHEMATIK, 2001, 133 (03) :177-195
[18]   A CLASSIFICATION OF ALMOST CONTACT METRIC MANIFOLDS [J].
CHINEA, D ;
GONZALEZ, C .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1990, 156 :15-36
[19]  
Endo H, 2005, AN STIINT U AI CUZA, V51, P439
[20]   On the Existence of Proper Nearly Kenmotsu Manifolds [J].
Erken, I. Kupeli ;
Dacko, Piotr ;
Murathan, C. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) :4497-4507