Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency

被引:78
作者
Chen, Jin [1 ]
Intes, Xavier [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
Monte Carlo; time resolved; fluorescence tomography; small animal imaging; PHOTON MIGRATION; COUPLING METHOD; SIMULATION; TRANSPORT; SYSTEM;
D O I
10.1118/1.3641827
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The Monte Carlo method is an accurate model for time-resolved quantitative fluorescence tomography. However, this method suffers from low computational efficiency due to the large number of photons required for reliable statistics. This paper presents a comparison study on the computational efficiency of three Monte Carlo-based methods for time-domain fluorescence molecular tomography. Methods: The methods investigated to generate time-gated Jacobians were the perturbation Monte Carlo (pMC) method, the adjoint Monte Carlo (aMC) method and the mid-way Monte Carlo (mMC) method. The effects of the different parameters that affect the computation time and statistics reliability were evaluated. Also, the methods were applied to a set of experimental data for tomographic application. Results: In silico results establish that, the investigated parameters affect the computational time for the three methods differently (linearly, quadratically, or not significantly). Moreover, the noise level of the Jacobian varies when these parameters change. The experimental results in preclinical settings demonstrates the feasibility of using both aMC and pMC methods for time-resolved whole body studies in small animals within a few hours. Conclusions: Among the three Monte Carlo methods, the mMC method is a computationally prohibitive technique that is not well suited for time-domain fluorescence tomography applications. The pMC method is advantageous over the aMC method when the early gates are employed and large number of detectors is present. Alternatively, the aMC method is the method of choice when a small number of source-detector pairs are used. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3641827]
引用
收藏
页码:5788 / 5798
页数:11
相关论文
共 27 条
[1]   Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration [J].
Alerstam, Erik ;
Svensson, Tomas ;
Andersson-Engels, Stefan .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (06)
[2]   White Monte Carlo for time-resolved photon migration [J].
Alerstam, Erik ;
Andersson-Engels, Stefan ;
Svensson, Tomas .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (04)
[3]   Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study [J].
Alexandrakis, G ;
Rannou, FR ;
Chatziioannou, AF .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (17) :4225-4241
[4]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[5]   Real-time diffuse optical tomography based on structured illumination [J].
Belanger, Samuel ;
Abran, Maxime ;
Intes, Xavier ;
Casanova, Christian ;
Lesage, Frederic .
JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (01)
[6]  
Chen J., 2010, OPT LETT, V35
[7]   Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates [J].
Chen, Jin ;
Venugopal, Vivek ;
Intes, Xavier .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (04) :871-886
[8]   Time-gated perturbation Monte Carlo for whole body functional imaging in small animals [J].
Chen, Jin ;
Intes, Xavier .
OPTICS EXPRESS, 2009, 17 (22) :19566-19579
[9]   Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation [J].
Crilly, RJ ;
Cheong, WF ;
Wilson, B ;
Spears, JR .
APPLIED OPTICS, 1997, 36 (25) :6513-6519
[10]   Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units [J].
Fang, Qianqian ;
Boas, David A. .
OPTICS EXPRESS, 2009, 17 (22) :20178-20190