Properties and Applications of the Distance Functions on Open Sets of the Euclidean Space

被引:2
|
作者
Avkhadiev, F. G. [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlyovskaya Str, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
distance function; Rademacher theorem; Motzkin theorem; approximation of open set; convex domain; Hardy type inequality; HARDY-TYPE INEQUALITIES; INTEGRAL-INEQUALITIES; DOMAINS; CONSTANTS;
D O I
10.3103/S1066369X20040088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an open subset of the Euclidean space of dimension n we consider interior and exterior approximations by sequences of open sets. We prove convergence everywhere of the corresponding sequences of distance functions from boundary as well as convergence almost everywhere for their gradients. As applications we obtain several new Hardy-type inequalities that contain the scalar product of gradients of test functions and the gradient of the distance function from the boundary of an open subset of the Euclidean space.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 50 条
  • [1] Properties and Applications of the Distance Functions on Open Sets of the Euclidean Space
    F. G. Avkhadiev
    Russian Mathematics, 2020, 64 : 75 - 79
  • [2] Optimization of the Hausdorff distance between sets in Euclidean space
    V. N. Ushakov
    A. S. Lakhtin
    P. D. Lebedev
    Proceedings of the Steklov Institute of Mathematics, 2015, 291 : 222 - 238
  • [3] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Bachoc, Christine
    Passuello, Alberto
    Thiery, Alain
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 783 - 808
  • [4] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 291 - 308
  • [5] The Density of Sets Avoiding Distance 1 in Euclidean Space
    Christine Bachoc
    Alberto Passuello
    Alain Thiery
    Discrete & Computational Geometry, 2015, 53 : 783 - 808
  • [6] Optimization of the Hausdorff distance between sets in Euclidean space
    Ushakov, V. N.
    Lakhtin, A. S.
    Lebedev, P. D.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 : S222 - S238
  • [7] Antipodality properties of finite sets in Euclidean space
    Martini, H
    Soltan, V
    DISCRETE MATHEMATICS, 2005, 290 (2-3) : 221 - 228
  • [8] Classification of three-distance sets in two dimensional Euclidean space
    Shinohara, M
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 1039 - 1058
  • [9] TWO-DISTANCE PRESERVING FUNCTIONS FROM EUCLIDEAN SPACE
    Károly Bezdek
    Robert Connelly
    Periodica Mathematica Hungarica, 2000, 39 (1-3) : 185 - 200
  • [10] INTERPOLATION PROPERTIES OF FUNCTIONS AND IMBEDDING OF SETS INTO EUCLIDEAN AND PROJECTIVE SPACES
    SHASHKIN, YA
    DOKLADY AKADEMII NAUK SSSR, 1967, 174 (05): : 1030 - &