Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae

被引:52
作者
Kim, Jin-Woo [1 ,2 ]
Seo, Seung-Oh [3 ,4 ]
Zhang, Guo-Chang [3 ,4 ]
Jin, Yong-Su [3 ,4 ]
Seo, Jin-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151921, South Korea
[2] Seoul Natl Univ, Ctr Food & Bioconvergence, Seoul 151921, South Korea
[3] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[4] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Saccharomyces cerevisiae; 2,3-Butanediol; Glycerol; NADH oxidase; Cofactor engineering; PYRUVATE-DECARBOXYLASE; BACILLUS-SUBTILIS; GLUCOSE; YEAST; DEHYDROGENASE; METABOLISM; ACETOIN; IMPACT; FERMENTATION; KINASE;
D O I
10.1016/j.biortech.2015.02.077
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
To minimize glycerol production during 2,3-BD fermentation by the engineered Saccharomyces cerevisiae, the Lactococcus lactis water-forming NADH oxidase gene (noxE) was expressed at five different levels. The expression of NADH oxidase substantially decreased the intracellular NADH/NAD(+) ratio. The S. cerevisiae BD5_T2nox strain expressing noxE produced 2,3-BD with yield of 0.359 g 2,3-BD/g glucose and glycerol with 0.069 g glycerol/g glucose, which are 23.8% higher and 65.3% lower than those of the isogenic strain without noxE. These results demonstrate that the carbon flux could be redirected from glycerol to 2,3-BD through alteration of the NADH/NAD+ ratio by the expression of NADH oxidase. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:512 / 519
页数:8
相关论文
共 38 条
[31]  
QURESHI N, 1989, APPL MICROBIOL BIOT, V30, P440
[32]   Origin and production of acetoin during wine yeast fermentation [J].
Romano, P ;
Suzzi, G .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1996, 62 (02) :309-315
[33]   Biological production of 2,3-butanediol [J].
Syu, MJ .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 55 (01) :10-18
[34]   THE DEHYDRATION OF FERMENTATIVE 2,3-BUTANEDIOL INTO METHYL ETHYL KETONE [J].
TRAN, AV ;
CHAMBERS, RP .
BIOTECHNOLOGY AND BIOENGINEERING, 1987, 29 (03) :343-351
[35]   Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast [J].
van Maris, AJA ;
Geertman, JMA ;
Vermeulen, A ;
Groothuizen, MK ;
Winkler, AA ;
Piper, MDW ;
van Dijken, JP ;
Pronk, JT .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (01) :159-166
[36]   Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae [J].
Vemuri, G. N. ;
Eiteman, M. A. ;
McEwen, J. E. ;
Olsson, L. ;
Nielsen, J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2402-2407
[37]   Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae [J].
Verho, R ;
Londesborough, J ;
Penttilä, M ;
Richard, P .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5892-5897
[38]   Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30 [J].
Zhang, Liaoyuan ;
Yang, Yunlong ;
Sun, Jian'an ;
Shen, Yaling ;
Wei, Dongzhi ;
Zhu, Jiawen ;
Chu, Ju .
BIORESOURCE TECHNOLOGY, 2010, 101 (06) :1961-1967