Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae

被引:48
作者
Kim, Jin-Woo [1 ,2 ]
Seo, Seung-Oh [3 ,4 ]
Zhang, Guo-Chang [3 ,4 ]
Jin, Yong-Su [3 ,4 ]
Seo, Jin-Ho [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Agr Biotechnol, Seoul 151921, South Korea
[2] Seoul Natl Univ, Ctr Food & Bioconvergence, Seoul 151921, South Korea
[3] Univ Illinois, Dept Food Sci & Human Nutr, Urbana, IL 61801 USA
[4] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
基金
新加坡国家研究基金会;
关键词
Saccharomyces cerevisiae; 2,3-Butanediol; Glycerol; NADH oxidase; Cofactor engineering; PYRUVATE-DECARBOXYLASE; BACILLUS-SUBTILIS; GLUCOSE; YEAST; DEHYDROGENASE; METABOLISM; ACETOIN; IMPACT; FERMENTATION; KINASE;
D O I
10.1016/j.biortech.2015.02.077
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
To minimize glycerol production during 2,3-BD fermentation by the engineered Saccharomyces cerevisiae, the Lactococcus lactis water-forming NADH oxidase gene (noxE) was expressed at five different levels. The expression of NADH oxidase substantially decreased the intracellular NADH/NAD(+) ratio. The S. cerevisiae BD5_T2nox strain expressing noxE produced 2,3-BD with yield of 0.359 g 2,3-BD/g glucose and glycerol with 0.069 g glycerol/g glucose, which are 23.8% higher and 65.3% lower than those of the isogenic strain without noxE. These results demonstrate that the carbon flux could be redirected from glycerol to 2,3-BD through alteration of the NADH/NAD+ ratio by the expression of NADH oxidase. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:512 / 519
页数:8
相关论文
共 38 条
  • [1] The two isoenzymes for yeast NAD(+)-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation
    Ansell, R
    Granath, K
    Hohmann, S
    Thevelein, JM
    Adler, L
    [J]. EMBO JOURNAL, 1997, 16 (09) : 2179 - 2187
  • [2] Acetolactate Synthase from Bacillus subtilis Serves as a 2-Ketoisovalerate Decarboxylase for Isobutanol Biosynthesis in Escherichia coli
    Atsumi, Shota
    Li, Zhen
    Liao, James C.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (19) : 6306 - 6311
  • [3] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [4] In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    Bro, C
    Regenberg, B
    Förster, J
    Nielsen, J
    [J]. METABOLIC ENGINEERING, 2006, 8 (02) : 102 - 111
  • [5] Costenoble R, 2000, YEAST, V16, P1483, DOI 10.1002/1097-0061(200012)16:16<1483::AID-YEA642>3.0.CO
  • [6] 2-K
  • [7] de Felipe FL, 1998, J BACTERIOL, V180, P3804
  • [8] Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
    dos Santos, MM
    Raghevendran, V
    Kötter, P
    Olsson, L
    Nielsen, J
    [J]. METABOLIC ENGINEERING, 2004, 6 (04) : 352 - 363
  • [9] Engineering of 2,3-Butanediol Dehydrogenase To Reduce Acetoin Formation by Glycerol-Overproducing, Low-Alcohol Saccharomyces cerevisiae
    Ehsani, Maryam
    Fernandez, Maria R.
    Biosca, Josep A.
    Julien, Anne
    Dequin, Sylvie
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2009, 75 (10) : 3196 - 3205
  • [10] CLONING AND CHARACTERIZATION OF GPD2, A 2ND GENE ENCODING SN-GLYCEROL 3-PHOSPHATE DEHYDROGENASE (NAD(+)) IN SACCHAROMYCES-CEREVISIAE, AND ITS COMPARISON WITH GPD1
    ERIKSSON, P
    ANDRE, L
    ANSELL, R
    BLOMBERG, A
    ADLER, L
    [J]. MOLECULAR MICROBIOLOGY, 1995, 17 (01) : 95 - 107