Convergence properties of block GMRES and matrix polynomials

被引:112
作者
Simoncini, V [1 ]
Gallopoulos, E [1 ]
机构
[1] UNIV PATRAS,DEPT COMP ENGN & INFORMAT,PATRAS 26500,GREECE
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(95)00093-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies convergence properties of the block GMRES algorithm when applied to nonsymmetric systems with multiple right-hand sides. A convergence theory is developed based on a representation of the method using matrix-valued polynomials. Relations between the roots of the residual polynomial for block GMRES and the matrix epsilon-pseudospectrum are derived, and illustrated with numerical experiments. The role of invariant subspaces in the effectiveness of block methods is also discussed.
引用
收藏
页码:97 / 119
页数:23
相关论文
共 40 条
[1]   THE LANCZOS - ARNOLDI ALGORITHM AND CONTROLLABILITY [J].
BOLEY, DL ;
GOLUB, GH .
SYSTEMS & CONTROL LETTERS, 1984, 4 (06) :317-324
[2]   A THEORETICAL COMPARISON OF THE ARNOLDI AND GMRES ALGORITHMS [J].
BROWN, PN .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :58-78
[3]  
BROYDEN CG, 1993, OPTIMIZATION METHODS, V2, P1
[4]  
CHATELIN F., 1983, Spectral Approximation of Linear Operators
[5]  
CHATFIELD DC, 1992, COMPLEX GENERALIZED
[6]   BLOCK DIAGONALLY DOMINANT MATRICES AND GENERALIZATIONS OF GERSCHGORIN CIRCLE THEOREM [J].
FEINGOLD, DG ;
VARGA, RS .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (04) :1241-&
[7]  
FISCHER B, 1989, APPROXIMATION THEORY, V6, P251
[8]   QUASI-KERNEL POLYNOMIALS AND THEIR USE IN NON-HERMITIAN MATRIX ITERATIONS [J].
FREUND, RW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 43 (1-2) :135-158
[9]  
FREUND RW, 1991, J APPROX THEORY, V65, P261
[10]  
Golub G.H., 1977, MATH SOFTWARE, P364