Narrow-Linewidth Laser Linewidth Measurement Technology

被引:47
作者
Bai, Zhenxu [1 ,2 ,3 ]
Zhao, Zhongan [1 ,2 ]
Qi, Yaoyao [1 ,2 ]
Ding, Jie [1 ,2 ]
Li, Sensen [4 ]
Yan, Xiusheng [4 ]
Wang, Yulei [1 ,2 ]
Lu, Zhiwei [1 ,2 ]
机构
[1] Hebei Univ Technol, Ctr Adv Laser Technol, Tianjin, Peoples R China
[2] Hebei Key Lab Adv Laser Technol & Equipment, Tianjin, Peoples R China
[3] Macquarie Univ, Dept Phys & Astron, MQ Photon Res Ctr, Sydney, NSW, Australia
[4] Sci & Technol Elect Opt Informat Secur Control La, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
narrow-linewidth; laser; measurement; high coherence; beat note; SELF-HETERODYNE INTERFEROMETER; FREQUENCY-NOISE; FIBER LASER; PHASE; STABILIZATION; RESOLUTION; ACCURACY; LIDAR; LONG;
D O I
10.3389/fphy.2021.768165
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A narrow-linewidth laser with excellent temporal coherence is an important light source for microphysics, space detection, and high-precision measurement. An ultranarrow-linewidth output with a linewidth as narrow as subhertz has been generated with a theoretical coherence length over millions of kilometers. Traditional grating spectrum measurement technology has a wide wavelength scanning range and an extended dynamic range, but the spectral resolution can only reach the gigahertz level. The spectral resolution of a high-precision Fabry-Perot interferometer can only reach the megahertz level. With the continuous improvement of laser coherence, the requirements for laser linewidth measurement technology are increasing, which also promotes the rapid development of narrow-linewidth lasers and their applications. In this article, narrow-linewidth measurement methods and their research progress are reviewed to provide a reference for researchers engaged in the development, measurement, and applications of narrow-linewidth lasers.
引用
收藏
页数:7
相关论文
共 72 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   LIGO: the Laser Interferometer Gravitational-Wave Observatory [J].
Abbott, B. P. ;
Abbott, R. ;
Adhikari, R. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Amin, R. S. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arain, M. A. ;
Araya, M. ;
Armandula, H. ;
Armor, P. ;
Aso, Y. ;
Aston, S. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. ;
Ballmer, S. ;
Barker, C. ;
Barker, D. ;
Barr, B. ;
Barriga, P. ;
Barsotti, L. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Bastarrika, M. ;
Behnke, B. ;
Benacquista, M. ;
Betzwieser, J. ;
Beyersdorf, P. T. ;
Bilenko, I. A. ;
Billingsley, G. ;
Biswas, R. ;
Black, E. ;
Blackburn, J. K. ;
Blackburn, L. ;
Blair, D. ;
Bland, B. ;
Bodiya, T. P. ;
Bogue, L. ;
Bork, R. ;
Boschi, V. ;
Bose, S. ;
Brady, P. R. ;
Braginsky, V. B. ;
Brau, J. E. ;
Bridges, D. O. .
REPORTS ON PROGRESS IN PHYSICS, 2009, 72 (07)
[3]   A simple interpolating algorithm for the rapid and accurate calculation of the Voigt function [J].
Abrarov, S. M. ;
Quine, B. M. ;
Jagpal, R. K. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (6-7) :376-383
[4]   Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy [J].
Al-Taiy, H. ;
Wenzel, N. ;
Preussler, S. ;
Klinger, J. ;
Schneider, T. .
OPTICS LETTERS, 2014, 39 (20) :5826-5829
[5]  
Argence B, 2015, NAT PHOTONICS, V9, P456, DOI [10.1038/NPHOTON.2015.93, 10.1038/nphoton.2015.93]
[6]   The Influence of Laser Linewidth on the Brillouin Shift Frequency Accuracy of BOTDR [J].
Bai, Qing ;
Yan, Min ;
Xue, Bo ;
Gao, Yan ;
Wang, Dong ;
Wang, Yu ;
Zhang, Mingjiang ;
Zhang, Hongjuan ;
Jin, Baoquan .
APPLIED SCIENCES-BASEL, 2019, 9 (01)
[7]   Diamond Brillouin laser in the visible [J].
Bai, Zhenxu ;
Williams, Robert J. ;
Kitzler, Ondrej ;
Sarang, Soumya ;
Spence, David J. ;
Wang, Yulei ;
Lu, Zhiwei ;
Mildren, Richard P. .
APL PHOTONICS, 2020, 5 (03)
[8]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[9]   HIGH-ACCURACY MEASUREMENT OF THE LINEWIDTH OF A BRILLOUIN FIBER RING LASER [J].
BOSCHUNG, J ;
THEVENAZ, L ;
ROBERT, PA .
ELECTRONICS LETTERS, 1994, 30 (18) :1488-1489
[10]   An analytical derivation of a popular approximation of the Voigt function for quantification of NMR spectra [J].
Bruce, SD ;
Higinbotham, J ;
Marshall, I ;
Beswick, PH .
JOURNAL OF MAGNETIC RESONANCE, 2000, 142 (01) :57-63