Single-cell Hi-C data analysis: safety in numbers

被引:23
|
作者
Galitsyna, Aleksandra A. [1 ]
Gelfand, Mikhail S. [2 ,3 ]
机构
[1] Skolkovo Inst Sci & Technol, Prof Gelfands Grp, Moscow, Russia
[2] Skolkovo Inst Sci & Technol, Ctr Life Sci, Moscow, Russia
[3] Skolkovo Inst Sci & Technol, Biomed Res, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
single cell; chromatin; single-cell Hi-C; conformation capture; single-cell sequencing; 3-DIMENSIONAL GENOME STRUCTURES; CHROMOSOME CONFORMATION; CHROMATIN ARCHITECTURE; SYSTEMATIC BIASES; REVEALS; ORGANIZATION; DNA; DYNAMICS;
D O I
10.1093/bib/bbab316
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Over the past decade, genome-wide assays for chromatin interactions in single cells have enabled the study of individual nuclei at unprecedented resolution and throughput. Current chromosome conformation capture techniques survey contacts for up to tens of thousands of individual cells, improving our understanding of genome function in 3D. However, these methods recover a small fraction of all contacts in single cells, requiring specialised processing of sparse interactome data. In this review, we highlight recent advances in methods for the interpretation of single-cell genomic contacts. After discussing the strengths and limitations of these methods, we outline frontiers for future development in this rapidly moving field.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Single-Cell Hi-C Technologies and Computational Data Analysis
    Dautle, Madison A.
    Chen, Yong
    ADVANCED SCIENCE, 2025, 12 (09)
  • [2] Unsupervised embedding of single-cell Hi-C data
    Liu, Jie
    Lin, Dejun
    Yardimci, Galip Gurkan
    Noble, William Stafford
    BIOINFORMATICS, 2018, 34 (13) : 96 - 104
  • [3] Advances in methods and applications of single-cell Hi-C data analysis
    Gong H.
    Ma F.
    Zhang X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (05): : 1033 - 1039
  • [4] Galaxy HiCExplorer 3: a web server for reproducible Hi-C, capture Hi-C and single-cell Hi-C data analysis, quality control and visualization
    Wolff, Joachim
    Rabbani, Leily
    Gilsbach, Ralf
    Richard, Gautier
    Manke, Thomas
    Backofen, Rolf
    Gruening, Bjoern A.
    NUCLEIC ACIDS RESEARCH, 2020, 48 (W1) : W177 - W184
  • [5] Massively multiplex single-cell Hi-C
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Gunderson, Kevin L.
    Steemers, Frank J.
    Disteche, Christine M.
    Noble, William S.
    Duan, Zhijun
    Shendure, Jay
    NATURE METHODS, 2017, 14 (03) : 263 - +
  • [6] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Zhang, Ruochi
    Zhou, Tianming
    Ma, Jian
    NATURE BIOTECHNOLOGY, 2022, 40 (02) : 254 - +
  • [7] Massively multiplex single-cell Hi-C
    Ramani V.
    Deng X.
    Qiu R.
    Gunderson K.L.
    Steemers F.J.
    Disteche C.M.
    Noble W.S.
    Duan Z.
    Shendure J.
    Nature Methods, 2017, 14 (3) : 263 - 266
  • [8] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    Nature Biotechnology, 2022, 40 : 254 - 261
  • [9] Single-cell technologies meet Hi-C
    Hughes, Jim R.
    Davies, James O. J.
    NATURE GENETICS, 2024, : 1542 - 1543
  • [10] scHiGex: predicting single-cell gene expression based on single-cell Hi-C data
    Shrestha, Bishal
    Siciliano, Andrew Jordan
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)