Lyapunov Stability of Quasilinear Implicit Dynamic Equations on Time Scales

被引:3
作者
Du, N. H. [1 ]
Liem, N. C. [1 ]
Chyan, C. J. [2 ]
Lin, S. W. [2 ]
机构
[1] Vietnam Natl Univ, Dept Math Mech & Informat, Hanoi, Vietnam
[2] Tamkang Univ, Dept Math, Tamsui 25317, Taipei County, Taiwan
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2011年
关键词
DIFFERENTIAL-ALGEBRAIC EQUATIONS; SYSTEMS;
D O I
10.1155/2011/979705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the stability of the solution x equivalent to 0 for a class of quasilinear implicit dynamic equations on time scales of the form A(t)x(Delta) = f(t, x ). We deal with an index concept to study the solvability and use Lyapunov functions as a tool to approach the stability problem.
引用
收藏
页数:27
相关论文
共 19 条
  • [1] Anh P.K., 2006, INT J DIFFERENCE EQU, V1, P181
  • [2] [Anonymous], 2003, ADV DYNAMIC EQUATION
  • [3] [Anonymous], 1989, LECT NOTES CONTROL I
  • [4] [Anonymous], ANAL AUF MASSKETTEN
  • [5] [Anonymous], 1986, DIFFERENTIAL ALGEBRA
  • [6] Linear perturbations of a nonoscillatory second-order dynamic equation
    Bohner, Martin
    Stevic, Stevo
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (11-12) : 1211 - 1221
  • [7] Trench's perturbation theorem for dynamic equations
    Bohner, Martin
    Stevic, Stevo
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
  • [8] Campbell S. L., 1980, Research Notes in Mathematics, V40
  • [9] Stability radii for positive linear time-invariant systems on time scales
    Doan, T. S.
    Kalauch, A.
    Siegmund, S.
    Wirth, F. R.
    [J]. SYSTEMS & CONTROL LETTERS, 2010, 59 (3-4) : 173 - 179
  • [10] Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations
    Du, Nguyen Huu
    Linh, Vu Hoang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) : 579 - 599