Lyapunov Stability of Quasilinear Implicit Dynamic Equations on Time Scales

被引:3
作者
Du, N. H. [1 ]
Liem, N. C. [1 ]
Chyan, C. J. [2 ]
Lin, S. W. [2 ]
机构
[1] Vietnam Natl Univ, Dept Math Mech & Informat, Hanoi, Vietnam
[2] Tamkang Univ, Dept Math, Tamsui 25317, Taipei County, Taiwan
关键词
DIFFERENTIAL-ALGEBRAIC EQUATIONS; SYSTEMS;
D O I
10.1155/2011/979705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the stability of the solution x equivalent to 0 for a class of quasilinear implicit dynamic equations on time scales of the form A(t)x(Delta) = f(t, x ). We deal with an index concept to study the solvability and use Lyapunov functions as a tool to approach the stability problem.
引用
收藏
页数:27
相关论文
共 19 条
[1]  
Anh P.K., 2006, INT J DIFFERENCE EQU, V1, P181
[2]  
[Anonymous], 2003, ADV DYNAMIC EQUATION
[3]  
[Anonymous], 1989, LECT NOTES CONTROL I
[4]  
[Anonymous], ANAL AUF MASSKETTEN
[5]  
[Anonymous], 1986, DIFFERENTIAL ALGEBRA
[6]   Linear perturbations of a nonoscillatory second-order dynamic equation [J].
Bohner, Martin ;
Stevic, Stevo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (11-12) :1211-1221
[7]   Trench's perturbation theorem for dynamic equations [J].
Bohner, Martin ;
Stevic, Stevo .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
[8]  
Campbell S. L., 1980, Research Notes in Mathematics, V40
[9]   Stability radii for positive linear time-invariant systems on time scales [J].
Doan, T. S. ;
Kalauch, A. ;
Siegmund, S. ;
Wirth, F. R. .
SYSTEMS & CONTROL LETTERS, 2010, 59 (3-4) :173-179
[10]   Stability radii for linear time-varying differential-algebraic equations with respect to dynamic perturbations [J].
Du, Nguyen Huu ;
Linh, Vu Hoang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) :579-599