Profiling of high-throughput mass spectrometry data for ovarian cancer detection

被引:0
|
作者
He, Shan [1 ]
Li, Xiaoli [1 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2007 | 2007年 / 4881卷
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Mass Spectrometry (MS) has been applied to the early detection of ovarian cancer. To date, most of the studies concentrated on the so-called whole-spectrum approach, which treats each point in the spectrum as a separate test, due to its better accuracy than the profiling approach. However, the whole-spectrum approach does not guarantee biologically meaningful results and is difficult for biological interpretation and clinical application. Therefore, to develop an accurate profiling technique for early detection of ovarian cancer is required. This paper proposes a novel profiling method for high-resolution ovarian cancer MS data by integrating the Smoothed Nonlinear Energy Operator (SNEO), correlation-based peak selection and Random Forest classifier. In order to evaluate the performance of this novel method without bias, we employed randomization techniques by dividing the data set into testing set and training set to test the whole procedure for many times over. Test results show that the method can find a parsimonious set of biologically meaningful biomarkers with better accuracy than other methods.
引用
收藏
页码:860 / 869
页数:10
相关论文
共 50 条
  • [1] Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data
    Yu, JS
    Ongarello, S
    Fiedler, R
    Chen, XW
    Toffolo, G
    Cobelli, C
    Trajanoski, Z
    BIOINFORMATICS, 2005, 21 (10) : 2200 - 2209
  • [2] Interpretation of mass spectrometry data for high-throughput proteomics
    Daniel C. Chamrad
    Gerhard Koerting
    Johan Gobom
    Herbert Thiele
    Joachim Klose
    Helmut E. Meyer
    Martin Blueggel
    Analytical and Bioanalytical Chemistry, 2003, 376 : 1014 - 1022
  • [3] Interpretation of mass spectrometry data for high-throughput proteomics
    Chamrad, DC
    Koerting, G
    Gobom, J
    Thiele, H
    Klose, J
    Meyer, HE
    Blueggel, M
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 376 (07) : 1014 - 1022
  • [4] High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data
    Bombardelli Gomig, Talita Helen
    Cavalli, Iglenir Joao
    Rodrigues de Souza, Ricardo Lehtonen
    Rodrigues Lucena, Aline Castro
    Batista, Michel
    Machado, Kelly Cavalcanti
    Marchini, Fabricio Klerynton
    Marchi, Fabio Albuquerque
    Lima, Rubens Silveira
    Urban, Cicero de Andrade
    Cavalli, Luciane Regina
    de Souza Fonseca Ribeiro, Enilze Maria
    DATA IN BRIEF, 2019, 25
  • [5] High-throughput fecal metabolic profiling for the early detection of colorectal cancer using a direct mass spectrometry assay.
    Paizs, Petra
    Widlak, Monika
    Perdones-Montero, Alvaro
    Sani, Maria
    Ford, Lauren
    Alexander, James L.
    Cameron, Simon
    Arasaradnam, Ramesh
    Kinross, James M.
    Takats, Zoltan
    CANCER RESEARCH, 2021, 81 (13)
  • [6] Profiling of Mass Spectrometry Data for Ovarian Cancer Detection Using Negative Correlation Learning
    He, Shan
    Chen, Huanhuan
    Li, Xiaoli
    Yao, Xin
    ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, 2009, 5769 : 185 - 194
  • [7] A tool for quantitative analysis of high-throughput mass spectrometry data
    Park, S. Kyu
    Venable, J. D.
    Xu, T.
    Liao, L.
    Yates, J. R., III
    MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) : S199 - S199
  • [8] Data processing for high-throughput mass spectrometry in drug discovery
    Liu, Chang
    Zhang, Hui
    EXPERT OPINION ON DRUG DISCOVERY, 2024, 19 (07) : 815 - 825
  • [9] Integration of tPSA and high-throughput mass spectrometry data improves prostate cancer prediction
    Ongarello, Stefano
    Steiner, Eberhard
    Achleitner, Regina
    Feuerstein, Isabel
    Stenzel, Birgit
    Fuchsberger, Christian
    Cobelli, Claudio
    Toffolo, Gianna
    Horninger, Wolfgang
    Bartsch, Georg
    Bonn, Guenther K.
    Klocker, Helmut
    Pelzer, Alexandre E.
    JOURNAL OF UROLOGY, 2007, 177 (04): : 52 - 53
  • [10] Integration of tPSA and high-throughput mass spectrometry data improves prostate cancer prediction
    Ongarello, S.
    Steiner, E.
    Feuerstein, I.
    Achleitner, R.
    Stenzel, B.
    Cobelli, C.
    Toffolo, G.
    Fuchsberger, C.
    Bartsch, G.
    Bonn, G. K.
    Klocker, H.
    Pelzer, A. E.
    EUROPEAN UROLOGY SUPPLEMENTS, 2007, 6 (02) : 150 - 150