Semidefinite and Linear Programming Integrality Gaps for Scheduling Identical Machines

被引:1
作者
Kurpisz, Adam [1 ]
Mastrolilli, Monaldo [1 ]
Mathieu, Claire [2 ]
Moemke, Tobias [3 ]
Verdugo, Victor [2 ,4 ]
Wiese, Andreas [5 ]
机构
[1] Dalle Molle Inst Artificial Intelligence Res, Manno, Switzerland
[2] Ecole Normale Super, CNRS UMR 8548, Dept Comp Sci, Paris, France
[3] Univ Saarland, Dept Comp Sci, Saarbrucken, Germany
[4] Univ Chile, Dept Ind Engn, Santiago, Chile
[5] Max Planck Inst Informat, Saarbrucken, Germany
来源
INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016 | 2016年 / 9682卷
关键词
LOVASZ-SCHRIJVER; VERTEX COVER; RELAXATIONS; LP;
D O I
10.1007/978-3-319-33461-5_13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sherali-Adams [25] and Lovasz-Schrijver [21] developed systematic procedures to strengthen a relaxation known as lift-and-project methods. They have been proven to be a strong tool for developing approximation algorithms, matching the best relaxations known for problems like Max-Cut and Sparsest-Cut. In this work we provide lower bounds for these hierarchies when applied over the configuration LP for the problem of scheduling identical machines to minimize the makespan. First we show that the configuration LP has an integrality gap of at least 1024/1023 by providing a family of instances with 15 different job sizes. Then we show that for any integer n there is an instance with n jobs in this family such that after Omega(n) rounds of the Sherali-Adams (SA) or the Lovasz-Schrijver (LS+) hierarchy the integrality gap remains at least 1024/1023.
引用
收藏
页码:152 / 163
页数:12
相关论文
共 27 条
[21]  
Levey E., 2015, ABS150907808 CORR
[22]   CONES OF MATRICES AND SET-FUNCTIONS AND 0-1 OPTIMIZATION [J].
Lovasz, L. ;
Schrijver, A. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :166-190
[23]   Semidefinite programming relaxations for semialgebraic problems [J].
Parrilo, PA .
MATHEMATICAL PROGRAMMING, 2003, 96 (02) :293-320
[24]  
RothvoSS T., 2013, LECT NOTES MAPSP
[25]   Tight Integrality Gaps for Lovasz-Schrijver LP Relaxations of Vertex Cover and Max Cut [J].
Schoenebeck, Grant ;
Trevisan, Luca ;
Tulsiani, Madhur .
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, :302-310
[26]   A HIERARCHY OF RELAXATIONS BETWEEN THE CONTINUOUS AND CONVEX-HULL REPRESENTATIONS FOR ZERO-ONE PROGRAMMING-PROBLEMS [J].
SHERALI, HD ;
ADAMS, WP .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (03) :411-430
[27]   On the configuration-LP for scheduling on unrelated machines [J].
Verschae, Jose ;
Wiese, Andreas .
JOURNAL OF SCHEDULING, 2014, 17 (04) :371-383