A COMPARISON OF LOW-LOAD EFFICIENCY OPTIMIZATION ON A HEAVY-DUTY ENGINE OPERATED WITH GASOLINE -DIESEL RCCI AND CDC

被引:0
|
作者
Willems, R. C. [1 ]
Willems, F. P. T. [1 ]
Deen, N. G. [1 ]
Somers, L. M. T. [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
来源
PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE FALL TECHNICAL CONFERENCE, 2019 | 2020年
关键词
COMPRESSION IGNITION RCCI; INJECTION STRATEGIES; FUEL; COMBUSTION; EMISSIONS; BENEFITS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Upcoming CO2 legislation in Europe is driving heavy-duty vehicle manufacturers to develop highly efficient engines more than ever before. Further improvements to conventional diesel combustion, or adopting the reactivity controlled compression ignition concept are both plausible strategies to comply with mandated targets. This work compares these two combustion regimes by performing an optimization on both using Design of Experiments. The tests are conducted on a heavy-duty, single-cylinder engine fueled with either only diesel, or a combination of diesel and gasoline. Analysis of variance is used to reveal the most influential operating parameters with respect to indicated efficiency. Attention is also directed towards the distribution of fuel energy to quantify individual loss channels. A load-speed combination typical for highway cruising is selected given its substantial contribution to the total fuel consumption of long haul trucks. Experiments show that when the intake manifold pressure is limited to levels that are similar to contemporary turbocharger capabilities, the conventional diesel combustion regime outperforms the dual fuel mode. Yet, the latter displays superior low levels of nitrogen oxides. Suboptimal combustion phasing was identified as main cause for this lower efficiency. By leaving the intake manifold pressure unrestricted, reactivity controlled compression ignition surpasses conventional diesel combustion regarding both the emissions of nitrogen oxides and indicated efficiency.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effects of multiple injections on combustion and emissions in a heavy-duty diesel engine at high load and low speed
    Lu, Yingying
    Liu, Yize
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (12)
  • [22] Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engine fueled with diesel and biodiesel at high altitude
    Wang, Xin
    Ge, Yunshan
    Yu, Linxiao
    Feng, Xiangyu
    FUEL, 2013, 107 : 852 - 858
  • [23] MODELING THE FUEL SPRAY OF A HIGH REACTIVITY GASOLINE UNDER HEAVY-DUTY DIESEL ENGINE CONDITIONS
    Pei, Yuanjiang
    Torelli, Roberto
    Tzanetakis, Tom
    Zhang, Yu
    Traver, Michael
    Cleary, David J.
    Som, Sibendu
    PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE FALL TECHNICAL CONFERENCE, 2017, VOL 2, 2017,
  • [24] Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load
    Pedrozo, Vinicius B.
    May, Ian
    Dalla Nora, Macklini
    Cairns, Alasdair
    Zhao, Hua
    APPLIED ENERGY, 2016, 165 : 166 - 182
  • [25] Artificial neural network to identify RCCI combustion mathematical model for a heavy-duty diesel engine fueled with natural gas and diesel oil
    Mojtaba Ebrahimi
    Mohammad Najafi
    Seyed Ali Jazayeri
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [26] Artificial neural network to identify RCCI combustion mathematical model for a heavy-duty diesel engine fueled with natural gas and diesel oil
    Ebrahimi, Mojtaba
    Najafi, Mohammad
    Jazayeri, Seyed Ali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (09)
  • [27] CAVITATION-SUPPRESSING ORIFICE DESIGN APPLIED TO A HEAVY-DUTY DIESEL ENGINE INJECTOR OPERATING WITH GASOLINE
    Torelli, Roberto
    Pei, Yuanjiang
    Zhang, Yu
    Traver, Michael
    Som, Sibendu
    PROCEEDINGS OF THE ASME 2020 THE INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF2020), 2020,
  • [28] Mixing-controlled compression ignition of ethanol using exhaust rebreathe at a low-load operating condition-Single cylinder experiments in a heavy-duty diesel engine
    Johnston, Tyler
    Zeman, Jared
    Dempsey, Adam
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2024,
  • [29] An experimental investigation of the effects of fuel injection strategy on the efficiency and emissions of a heavy-duty engine at high load with gasoline compression ignition
    Zou, Xionghui
    Liu, Weiwei
    Lin, Zhanglei
    Wu, Binyang
    Su, Wanhua
    FUEL, 2018, 220 : 437 - 445
  • [30] Effects of speed extension on PCCI combustion and emissions in a heavy-duty diesel engine at medium load
    Lu, Yingying
    Fan, Chao
    Liu, Yize
    Pei, Yiqiang
    FUEL, 2022, 313