System identification application using Hammerstein model

被引:15
作者
Ozer, Saban [1 ]
Zorlu, Hasan [1 ]
Mete, Selcuk [2 ]
机构
[1] Erciyes Univ, Dept Elect & Elect Engn, TR-38039 Kayseri, Turkey
[2] Turk Telekom AS, Kayseri Reg Off, TR-38070 Kayseri, Turkey
来源
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES | 2016年 / 41卷 / 06期
关键词
System identification; nonlinear model; block-oriented model; Hammerstein model; RLS algorithm; NONLINEAR-SYSTEMS; BILINEAR-SYSTEMS; ALGORITHM;
D O I
10.1007/s12046-016-0505-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Generally, memoryless polynomial nonlinear model for nonlinear part and finite impulse response (FIR) model or infinite impulse response model for linear part are preferred in Hammerstein models in literature. In this paper, system identification applications of Hammerstein model that is cascade of nonlinear second order volterra and linear FIR model are studied. Recursive least square algorithm is used to identify the proposed Hammerstein model parameters. Furthermore, the results are compared to identify the success of proposed Hammerstein model and different types of models.
引用
收藏
页码:597 / 605
页数:9
相关论文
共 49 条
  • [1] On the interpretation and practice of dynamical differences between Hammerstein and Wiener models
    Aguirre, LA
    Coelho, MCS
    Corréa, MV
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2005, 152 (04): : 349 - 356
  • [2] Integrated ARMA model method for damage detection of subsea pipeline system
    Bao, Chunxiao
    Hao, Hong
    Li, Zhong-Xian
    [J]. ENGINEERING STRUCTURES, 2013, 48 : 176 - 192
  • [3] Cetinkaya M B, 2010, THESIS
  • [4] A Variable Step-Size SIG Algorithm for Realizing the Optimal Adaptive FIR Filter
    Chen, Badong
    Zhu, Yu
    Hu, Jinchun
    Principe, Jose C.
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2011, 9 (06) : 1049 - 1055
  • [5] Nonlinear model identification of an experimental ball-and-tube system using a genetic programming approach
    Coelho, Leandro dos Santos
    Pessoa, Marcelo Wicthoff
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (05) : 1434 - 1446
  • [6] Identification of Hammerstein model using functional link artificial neural network
    Cui, Mingyong
    Liu, Haifang
    Li, Zhonghui
    Tang, Yinggan
    Guan, Xinping
    [J]. NEUROCOMPUTING, 2014, 142 : 419 - 428
  • [7] Identification of Hammerstein nonlinear ARMAX systems
    Ding, F
    Chen, TW
    [J]. AUTOMATICA, 2005, 41 (09) : 1479 - 1489
  • [8] Auxiliary model-based least-squares identification methods for Hammerstein output-error systems
    Ding, Feng
    Shi, Yang
    Chen, Tongwen
    [J]. SYSTEMS & CONTROL LETTERS, 2007, 56 (05) : 373 - 380
  • [9] Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition
    Ding, Feng
    Wang, Xuehai
    Chen, Qijia
    Xiao, Yongsong
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (09) : 3323 - 3338
  • [10] Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model
    Ding, Feng
    Wang, Yanjiao
    Ding, Jie
    [J]. DIGITAL SIGNAL PROCESSING, 2015, 37 : 100 - 108