Question-answering sentiment analysis (QASA) is a novel but meaningful sentiment analysis task based on question-answering online reviews. Existing neural network-based models that conduct sentiment analysis of online reviews have already achieved great success. However, the syntax and implicitly semantic connection in the dependency tree have not been made full use of, especially for Chinese which has specific syntax. In this work, we propose a Residual-Duet Network leveraging textual and tree dependency information for Chinese question-answering sentiment analysis. In particular, we explore the synergies of graph embedding with structural dependency links to learn syntactic information. The transverse and longitudinal compression encoders are developed to capture sentiment evidence with disparate types of compression and different residual connections. We evaluate our model on three Chinese QASA datasets in different domains. Experimental results demonstrate the superiority of our proposed model in Chinese question-answering sentiment analysis.