共 50 条
Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh
被引:118
|作者:
Proshad, Ram
[1
,2
]
Kormoker, Tapos
[3
]
Al, Mamun Abdullah
[2
,4
,5
]
Islam, Md Saiful
[6
]
Khadka, Sujan
[2
,7
]
Idris, Abubakr M.
[8
,9
]
机构:
[1] Chinese Acad Sci, Inst Mt Hazards & Environm, Key Lab Mt Surface Proc & Ecol Regulat, Chengdu 610041, Sichuan, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Patuakhali Sci & Technol Univ, Dept Emergency Management, Dumki 8602, Patuakhali, Bangladesh
[4] Chinese Acad Sci, Inst Urban Environm, Key Lab Urban Environm & Hlth, Aquat Ecohlth Grp,Fujian Key Lab Watershed Ecol, Xiamen 361021, Peoples R China
[5] Univ Chittagong, Inst Marine Sci, Chittagong 4331, Bangladesh
[6] Patuakhali Sci & Technol Univ, Dept Soil Sci, Dumki 8602, Patuakhali, Bangladesh
[7] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Environm Aquat Chem, Beijing 100085, Peoples R China
[8] King Khalid Univ, Coll Sci, Dept Chem, Abha 9004, Saudi Arabia
[9] King Khalid Univ, Res Ctr Adv Mat Sci RCAMS, POB 9004, Abha 61413, Saudi Arabia
基金:
中国国家自然科学基金;
关键词:
Toxic metals;
Riverine sediments;
PMF model;
APCS-MLR model;
Ecological risk;
HEAVY-METALS;
SURFACE SEDIMENTS;
SPATIAL-DISTRIBUTION;
POLLUTION;
CHINA;
CONTAMINATION;
ESTUARY;
ELEMENTS;
LAGOON;
WATER;
D O I:
10.1016/j.jhazmat.2021.127030
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Metal accumulation (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in Korotoa River sediment was studied in order to determine the metal content, distribution, sources, and their possible ecological impacts on the riverine ecosystem. Our study found significant spatial patterns of toxic metal concentration and principal coordinate analysis (PCoA) accounted for 45.2% of spatial variation from upstream to downstream. Metal contents were compared to sediment quality standards and found all studied metal concentrations exceeded the Threshold Effect Level (TEL) whereas Cr and Ni surpassed probable effect levels. All metal concentrations were higher than Average Shale Value (ASV) except Mn and Hg. The positive matrix factorization (PMF) and absolute principal component score-multiple linear regression models (APCS-MLR) were applied to identify promising sources of metals in sediment samples. Both models identified three potential sources i.e. natural source, traffic emission, and industrial pollution, which accounted for 50.32%, 20.16%, and 29.51% in PMF model whereas 43.56%, 29.42%, and 27.02% in APCS-MLR model, respectively. Based on ecological risk assessment, pollution load index (7.74), potential ecological risk (1078.45), Nemerow pollution index (5.50), and multiple probable effect concentrations quality (7.73) showed very high contamination of toxic metal in sediment samples.
引用
收藏
页数:15
相关论文