NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks

被引:53
作者
Shen, Zi-Ang [1 ]
Luo, Tao [1 ]
Zhou, Yuan-Ke [1 ]
Yu, Han [1 ]
Du, Pu-Feng [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
graph neural network; ncRNA-protein interaction; noncoding RNA; RNA-BINDING PROTEINS; LONG NONCODING RNAS; IDENTIFICATION; GENERATION; COMPONENTS; INSIGHTS; DATABASE; DISEASE;
D O I
10.1093/bib/bbab051
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noncoding RNAs (ncRNAs) play crucial roles in many biological processes. Experimental methods for identifying ncRNA-protein interactions (NPIs) are always costly and time-consuming. Many computational approaches have been developed as alternative ways. In this work, we collected five benchmarking datasets for predicting NPIs. Based on these datasets, we evaluated and compared the prediction performances of existing machine-learning based methods. Graph neural network (GNN) is a recently developed deep learning algorithm for link predictions on complex networks, which has never been applied in predicting NPIs. We constructed a GNN-based method, which is called Noncoding RNA-Protein Interaction prediction using Graph Neural Networks (NPI-GNN), to predict NPIs. The NPI-GNN method achieved comparable performance with state-of-the-art methods in a 5-fold cross-validation. In addition, it is capable of predicting novel interactions based on network information and sequence information. We also found that insufficient sequence information does not affect the NPI-GNN prediction performance much, which makes NPI-GNN more robust than other methods. As far as we can tell, NPI-GNN is the first end-to-end GNN predictor for predicting NPIs. All benchmarking datasets in this work and all source codes of the NPI-GNN method have been deposited with documents in a GitHub repo (https://github.com/AshuiRUA/NPI- GNN).
引用
收藏
页数:11
相关论文
共 66 条
[21]   RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts [J].
Keene, Jack D. ;
Komisarow, Jordan M. ;
Friedersdorf, Matthew B. .
NATURE PROTOCOLS, 2006, 1 (01) :302-307
[22]   SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period [J].
Santerne, A. ;
Moutou, C. ;
Tsantaki, M. ;
Bouchy, F. ;
Hebrard, G. ;
Adibekyan, V. ;
Almenara, J. -M. ;
Amard, L. ;
Barros, S. C. C. ;
Boisse, I. ;
Bonomo, A. S. ;
Bruno, G. ;
Courcol, B. ;
Deleuil, M. ;
Demangeon, O. ;
Diaz, R. F. ;
Guillot, T. ;
Havel, M. ;
Montagnier, G. ;
Rajpurohit, A. S. ;
Rey, J. ;
Santos, N. C. .
ASTRONOMY & ASTROPHYSICS, 2016, 587
[23]   Deciphering the role of RNA-binding proteins in the post-transcriptional control of gene expression [J].
Kishore, Shivendra ;
Luber, Sandra ;
Zavolan, Mihaela .
BRIEFINGS IN FUNCTIONAL GENOMICS, 2010, 9 (5-6) :391-404
[24]  
Knyazev B, 2019, ADV NEUR IN, V32
[25]   Long Noncoding RNAs: Past, Present, and Future [J].
Kung, Johnny T. Y. ;
Colognori, David ;
Lee, Jeannie T. .
GENETICS, 2013, 193 (03) :651-669
[26]   Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs [J].
Lagier-Tourenne, Clotilde ;
Polymenidou, Magdalini ;
Hutt, Kasey R. ;
Vu, Anthony Q. ;
Baughn, Michael ;
Huelga, Stephanie C. ;
Clutario, Kevin M. ;
Ling, Shuo-Chien ;
Liang, Tiffany Y. ;
Mazur, Curt ;
Wancewicz, Edward ;
Kim, Aneeza S. ;
Watt, Andy ;
Freier, Sue ;
Hicks, Geoffrey G. ;
Donohue, John Paul ;
Shiue, Lily ;
Bennett, C. Frank ;
Ravits, John ;
Cleveland, Don W. ;
Yeo, Gene W. .
NATURE NEUROSCIENCE, 2012, 15 (11) :1488-1497
[27]   PRIDB: a protein-RNA interface database [J].
Lewis, Benjamin A. ;
Walia, Rasna R. ;
Terribilini, Michael ;
Ferguson, Jeff ;
Zheng, Charles ;
Honavar, Vasant ;
Dobbs, Drena .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D277-D282
[28]   Predicting Long Noncoding RNA and Protein Interactions Using Heterogeneous Network Model [J].
Li, Ao ;
Ge, Mengqu ;
Zhang, Yao ;
Peng, Chen ;
Wang, Minghui .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[29]   HITS-CLIP yields genome-wide insights into brain alternative RNA processing [J].
Licatalosi, Donny D. ;
Mele, Aldo ;
Fak, John J. ;
Ule, Jernej ;
Kayikci, Melis ;
Chi, Sung Wook ;
Clark, Tyson A. ;
Schweitzer, Anthony C. ;
Blume, John E. ;
Wang, Xuning ;
Darnell, Jennifer C. ;
Darnell, Robert B. .
NATURE, 2008, 456 (7221) :464-U22
[30]   APPLICATIONS OF NEXT-GENERATION SEQUENCING RNA processing and its regulation: global insights into biological networks [J].
Licatalosi, Donny D. ;
Darnell, Robert B. .
NATURE REVIEWS GENETICS, 2010, 11 (01) :75-87