NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks

被引:54
作者
Shen, Zi-Ang [1 ]
Luo, Tao [1 ]
Zhou, Yuan-Ke [1 ]
Yu, Han [1 ]
Du, Pu-Feng [1 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
graph neural network; ncRNA-protein interaction; noncoding RNA; RNA-BINDING PROTEINS; LONG NONCODING RNAS; IDENTIFICATION; GENERATION; COMPONENTS; INSIGHTS; DATABASE; DISEASE;
D O I
10.1093/bib/bbab051
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Noncoding RNAs (ncRNAs) play crucial roles in many biological processes. Experimental methods for identifying ncRNA-protein interactions (NPIs) are always costly and time-consuming. Many computational approaches have been developed as alternative ways. In this work, we collected five benchmarking datasets for predicting NPIs. Based on these datasets, we evaluated and compared the prediction performances of existing machine-learning based methods. Graph neural network (GNN) is a recently developed deep learning algorithm for link predictions on complex networks, which has never been applied in predicting NPIs. We constructed a GNN-based method, which is called Noncoding RNA-Protein Interaction prediction using Graph Neural Networks (NPI-GNN), to predict NPIs. The NPI-GNN method achieved comparable performance with state-of-the-art methods in a 5-fold cross-validation. In addition, it is capable of predicting novel interactions based on network information and sequence information. We also found that insufficient sequence information does not affect the NPI-GNN prediction performance much, which makes NPI-GNN more robust than other methods. As far as we can tell, NPI-GNN is the first end-to-end GNN predictor for predicting NPIs. All benchmarking datasets in this work and all source codes of the NPI-GNN method have been deposited with documents in a GitHub repo (https://github.com/AshuiRUA/NPI- GNN).
引用
收藏
页数:11
相关论文
共 66 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Update on activities at the Universal Protein Resource (UniProt) in 2013 [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Alpi, Emanuela ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dimmer, Emily ;
Fazzini, Francesco ;
Gane, Paul ;
Fedotov, Alexander ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Jones, Rachel ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightingale, Andrew ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D43-D47
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   The anatomy of a large-scale hypertextual Web search engine [J].
Brin, S ;
Page, L .
COMPUTER NETWORKS AND ISDN SYSTEMS, 1998, 30 (1-7) :107-117
[5]   NONCODE v3.0: integrative annotation of long noncoding RNAs [J].
Bu, Dechao ;
Yu, Kuntao ;
Sun, Silong ;
Xie, Chaoyong ;
Skogerbo, Geir ;
Miao, Ruoyu ;
Xiao, Hui ;
Liao, Qi ;
Luo, Haitao ;
Zhao, Guoguang ;
Zhao, Haitao ;
Liu, Zhiyong ;
Liu, Changning ;
Chen, Runsheng ;
Zhao, Yi .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D210-D215
[6]  
Cangea Catalina, 2018, Towards Sparse Hierarchical Graph Classifiers
[7]   A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli [J].
Ernst, Jason ;
Beg, Qasim K. ;
Kay, Krin A. ;
Balázsi, Gábor ;
Oltvai, Zoltán N. ;
Bar-Joseph, Ziv .
PLoS Computational Biology, 2008, 4 (03)
[8]   Non-coding RNAs in human disease [J].
Esteller, Manel .
NATURE REVIEWS GENETICS, 2011, 12 (12) :861-874
[9]   LPI-BLS: Predicting lncRNA-protein interactions with a broad learning system-based stacked ensemble classifier [J].
Fan, Xiao-Nan ;
Zhang, Shao-Wu .
NEUROCOMPUTING, 2019, 370 :88-93
[10]  
Fout A, 2017, ADV NEUR IN, V30