Interplay Between Morphology, Optical Properties, and Electronic Structure of Solution-Processed Bi2S3 Colloidal Nanocrystals

被引:39
作者
Han, Peilin [1 ]
Mihi, Agustin [1 ]
Ferre-borrull, Josep [1 ]
Pallares, Josep [1 ]
Marsal, Lluis F. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Elect Elect & Automat, E-43007 Tarragona, Spain
关键词
LARGE-SCALE SYNTHESIS; QUANTUM DOTS; SOLAR-CELLS; GROWTH; NANOSTRUCTURES; DECOMPOSITION; NANOMATERIALS; ENHANCEMENT; NANOWIRES; NANORODS;
D O I
10.1021/acs.jpcc.5b01305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bi2S3 nanocrystals with different shapes and sizes are obtained by a hot injection approach using bismuth neodecanoate and thiolamine as bismuth and sulfur precursors. The colloid morphology, from nanodots to nanorods, with sizes ranging from 3-4 nm to 40-50 nm strongly depends on the preparation conditions such as injection temperature and ratio of Bi/S precursors and ultimately impacts the optical and electrical properties of the final nanocrystals. The resulting products are analyzed using X-ray powder diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption spectroscopy, and photoluminescence spectroscopy (PL). A blue shift in the band gap is observed at 1.87, 1.89, and 2.04 eV as we go from nanodots to nanorods with aspect ratios of 3, 5, and 1, respectively. These observations indicate quantum confinement effects due to the different diameters of nanocrystals. The crystallinity and morphology of nanocrystals influence significantly the PL emission, decreasing for nanodots and increasing for nanorods with the high aspect ratio. It also results in the variation in electronic structure from X-ray photoelectron spectroscopy (XPS) and ultraviolet photoemission (UPS) characterization that the valence band maximum shifts to low-energy level corresponding to the samples with aspect ratios of 3, 5, and 1, respectively.
引用
收藏
页码:10693 / 10699
页数:7
相关论文
共 51 条
  • [21] Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands
    Kovalenko, Maksym V.
    Scheele, Marcus
    Talapin, Dmitri V.
    [J]. SCIENCE, 2009, 324 (5933) : 1417 - 1420
  • [22] Li L., 2007, APPL PHYS LETT, V90, P1, DOI DOI 10.1063/1.2450659
  • [23] Band gap variation of size- and shape-controlled colloidal CdSe quantum rods
    Li, LS
    Hu, JT
    Yang, WD
    Alivisatos, AP
    [J]. NANO LETTERS, 2001, 1 (07) : 349 - 351
  • [24] Bi2S3 nanomaterials: morphology manipulation and related properties
    Ma, Jianmin
    Yang, Jiaqin
    Jiao, Lifang
    Wang, Taihong
    Lian, Jiabiao
    Duan, Xiaochuan
    Zheng, Wenjun
    [J]. DALTON TRANSACTIONS, 2011, 40 (39) : 10100 - 10108
  • [25] Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible film
    Malakooti, Reihaneh
    Cademartiri, Ludovico
    Akcakir, Yasemin
    Petrov, Srebri
    Migliori, Andrea
    Ozin, Geoffrey A.
    [J]. ADVANCED MATERIALS, 2006, 18 (16) : 2189 - +
  • [26] Near IR-Sensitive, Non-toxic, Polymer/Nanocrystal Solar Cells Employing Bi2S3 as the Electron Acceptor
    Martinez, Luis
    Bernechea, Maria
    Garcia de Arquer, F. Pelayo
    Konstantatos, Gerasimos
    [J]. ADVANCED ENERGY MATERIALS, 2011, 1 (06) : 1029 - 1035
  • [27] Mashford BS, 2013, NAT PHOTONICS, V7, P407, DOI [10.1038/NPHOTON.2013.70, 10.1038/nphoton.2013.70]
  • [28] Determination of the Excition Binding Energy in CdSe Quantum Dots
    Meulenberg, Robert W.
    Lee, Jonathan R. I.
    Wolcott, Abraham
    Zhang, Jin Z.
    Terminello, Louis J.
    van Buuren, Tony
    [J]. ACS NANO, 2009, 3 (02) : 325 - 330
  • [29] Panigrahi P.K., 2013, Journal of Nanoparticles, V2013, P1, DOI DOI 10.1155/2013/367812
  • [30] Novel and stable Mn2+@Bi2S3 quantum dots-glass system with giant magneto optical Faraday rotations
    Panmand, Rajendra P.
    Kumar, Ganapathy
    Mahajan, Satish M.
    Kulkarni, Milind V.
    Kale, Bharat B.
    Gosavi, Suresh W.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (06) : 1203 - 1210