Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population

被引:183
作者
Navas-Acien, Ana [1 ,2 ,3 ]
Francesconi, Kevin A. [4 ]
Silbergeld, Ellen K. [1 ]
Guallar, Eliseo [2 ,3 ,5 ,6 ]
机构
[1] Johns Hopkins Univ, Dept Environm Hlth Sci, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Epidemiol, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Welch Ctr Prevent Epidemiol & Clin Res, Bloomberg Sch Publ Hlth, Baltimore, MD 21205 USA
[4] Karl Franzens Univ Graz, Inst Chem Analyt Chem, Graz, Austria
[5] CNIC, Dept Cardiovasc Epidemiol & Populat Genet, Madrid, Spain
[6] Johns Hopkins Med Inst, Dept Med, Baltimore, MD 21205 USA
关键词
Arsenic; Arsenobetaine; Dimethylarsinate; NHANES; Seafood; METHYLATION CAPACITY; SPECIES EXCRETION; NATIONAL-HEALTH; EXPOSURE; SPECIATION; INGESTION; METABOLITES; RISK; ARSENOSUGAR; RETENTION;
D O I
10.1016/j.envres.2010.10.009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Background: Seafood is the main source of organic arsenic exposure (arsenobetaine, arsenosugars and arsenolipids) in the population. Arsenosugars and arsenolipids are metabolized to several species including dimethylarsinate (DMA). Objective: Evaluate the association of seafood intake with spot urine arsenic concentrations in the 2003-2006 National Health Nutrition and Examination Survey (NHANES). Methods: We studied 4276 participants >= 6 years. Total arsenic was measured using inductively coupled plasma dynamic reaction cell mass spectrometry (ICPMS). Urine DMA and arsenobetaine were measured by high-performance liquid chromatography coupled with ICPMS. Results: Participants reporting seafood in the past 24-h had higher urine concentrations of total arsenic (median 24.5 vs. 7.3 mu g/L), DMA (6.0 vs. 3.5 mu g/L), arsenobetaine (10.2 vs. 0.9 mu g/L) and total arsenic minus arsenobetaine (11.0 vs. 5.5 mu g/L). Participants reporting seafood >= 2/wk vs. never during the past year had 2.3 (95% confidence interval 1.9, 2.7). 1.4 (1.2, 1.6), 6.0 (4.6, 7.8) and 1.7 (1.4, 2.0) times higher (p-trend <0.001) concentrations of total arsenic, DMA, arsenobetaine and total arsenic minus arsenobetaine, respectively. In participants without detectable arsenobetaine and in analyses adjusted for arsenobetaine, seafood consumption in the past year was not associated with total arsenic or DMA concentrations in urine. Conclusion: Seafood intake was a major determinant of increased urine concentrations of total arsenic. DMA, arsenobetaine and total arsenic minus arsenobetaine in the US population. Epidemiologic studies that use total arsenic, DMA, the sum of inorganic arsenic, methylarsonate and DMA, and total arsenic minus arsenobetaine as markers of inorganic arsenic exposure and/or metabolism need to address seafood intake. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:110 / 118
页数:9
相关论文
共 66 条
[51]   Arsenic speciation analysis of cultivated white button mushrooms (Agaricus bisporus) using high-performance liquid chromatography -: Inductively coupled plasma mass spectrometry, and X-ray absorption Spectroscopy [J].
Smith, Paula G. ;
Koch, Iris ;
Reimer, Kenneth J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (20) :6947-6954
[52]   Significance of urinary arsenic speciation in assessment of seafood ingestion as the main source of organic and inorganic arsenic in a population resident near a coastal area [J].
Soleo, Leonardo ;
Lovreglio, Piero ;
Iavicoli, Sergio ;
Antelmi, Annarita ;
Drago, Ignazio ;
Basso, Antonella ;
Di Lorenzo, Luigi ;
Gilberti, Maria Enrica ;
De Palma, Giuseppe ;
Apostoli, Pietro .
CHEMOSPHERE, 2008, 73 (03) :291-299
[53]  
STATES JC, 2008, TOXICOL SCI
[54]   Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States [J].
Steinmaus, Craig ;
Bates, Michael N. ;
Yuan, Yan ;
Kalman, Dave ;
Atallah, Raja ;
Rey, Omar A. ;
Biggs, Mary L. ;
Hopenhayn, Claudia ;
Moore, Lee E. ;
Hoang, Bruce K. ;
Smith, Allan H. .
JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2006, 48 (05) :478-488
[55]   Low-level Population Exposure to Inorganic Arsenic in the United States and Diabetes Mellitus A Reanalysis [J].
Steinmaus, Craig ;
Yuan, Yan ;
Liaw, Jane ;
Smith, Allan H. .
EPIDEMIOLOGY, 2009, 20 (06) :807-815
[56]   Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells [J].
Styblo, M ;
Del Razo, LM ;
Vega, L ;
Germolec, DR ;
LeCluyse, EL ;
Hamilton, GA ;
Reed, W ;
Wang, C ;
Cullen, WR ;
Thomas, DJ .
ARCHIVES OF TOXICOLOGY, 2000, 74 (06) :289-299
[57]   Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires - The eating at America's table study [J].
Subar, AF ;
Thompson, FE ;
Kipnis, V ;
Midthune, D ;
Hurwitz, P ;
McNutt, S ;
McIntosh, A ;
Rosenfeld, S .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2001, 154 (12) :1089-1099
[58]   Arsenic-Containing lipids Are Natural Constituents of Sashimi Tuna [J].
Taleshi, Mojtaba S. ;
Edmonds, John S. ;
Goessler, Walter ;
Ruiz-Chancho, Maria Jose ;
Raber, Georg ;
Jensen, Kenneth B. ;
Francesconi, Kevin A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (04) :1478-1483
[59]   Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan [J].
Tseng, CH ;
Huang, YK ;
Huang, YL ;
Chung, CJ ;
Yang, MH ;
Chen, CJ ;
Hsueh, YM .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2005, 206 (03) :299-308
[60]  
*US DEP HHS, 2005, 3 NAT REP HUM EXP EN