End-System Aware Large File Transfer Solution for Rich Media Applications over 5G Mobile Networks

被引:0
作者
Lyu, Xukang [1 ]
Wu, Chase Q. [2 ]
机构
[1] Tianjin Univ, Coll Intelligence & Comp, Sch Comp Software, Tianjin 300354, Peoples R China
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07103 USA
来源
ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT I | 2020年 / 12452卷
基金
中国国家自然科学基金;
关键词
Transport control; Big data transfer; Mobile networks; 5G;
D O I
10.1007/978-3-030-60245-1_14
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In general, rich media applications demand high bandwidth to transfer large files over wide-area connections. The arrival of 5G will overcome the limitations of existing networks in support of these network-intensive applications because they provide high bandwidth reaching up to multiple Gbps for large file transfer. One of the main challenges to maximize and stabilize goodput is explicitly managing the randomness inherent in high-speed mobile networks. The AIMD-based TCP cannot make full utilization of bandwidth over links with high Bandwidth Delay Product. The inefficiency of transport control protocol can not satisfy the media applications transport requirements even over a high bandwidth end-to-end connection. We conducted an extensive analytical study of the design and implementation issues of high-speed data transfer methods, especially the impact of application-level receive buffer and the background workloads on the data transfer performance. We developed an optimized large file transfer solution based on this analysis to achieve the maximal bottleneck goodput. We showed that the proposed transport protocol achieves better performance compared to state-of-the-art transport methods.
引用
收藏
页码:205 / 218
页数:14
相关论文
共 19 条
[1]  
[Anonymous], 2006, Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications
[2]   A new CPU availability prediction model for time-shared systems [J].
Beltran, Marta ;
Guzman, Antonio ;
Luis Bosque, Jose .
IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (07) :865-875
[3]  
Bhat U., 2008, INTRO QUEUEING THEOR, DOI [10.1007/978-0-8176-4725-4, DOI 10.1007/978-0-8176-4725-4]
[4]  
Bocharov P., 2009, QUEUEING THEORY, DOI [10.1007/978-0-387-49706-8, DOI 10.1007/978-0-387-49706-8]
[5]   BBR: Congestion-Based Congestion Control [J].
Cardwell, Neal ;
Cheng, Yuchung ;
Gunn, C. Stephen ;
Yeganeh, Soheil Hassas ;
Jacobson, Van .
COMMUNICATIONS OF THE ACM, 2017, 60 (02) :58-66
[6]  
Daigle J., 2005, QUEUEING THEORY APPL, DOI [10.1007/0-387-22859-4, DOI 10.1007/0-387-22859-4]
[7]  
Gu Y., 2004, IEEE ACM T NETW
[8]   The QUIC Transport Protocol: Design and Internet-Scale Deployment [J].
Langley, Adam ;
Riddoch, Alistair ;
Wilk, Alyssa ;
Vicente, Antonio ;
Krasic, Charles ;
Zhang, Dan ;
Yang, Fan ;
Kouranov, Fedor ;
Swett, Ian ;
Iyengar, Janardhan ;
Bailey, Jeff ;
Dorfman, Jeremy ;
Roskind, Jim ;
Kulik, Joanna ;
Westin, Patrik ;
Tenneti, Raman ;
Shade, Robbie ;
Hamilton, Ryan ;
Vasiliev, Victor ;
Chang, Wan-Teh ;
Shi, Zhongyi .
SIGCOMM '17: PROCEEDINGS OF THE 2017 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2017, :183-196
[9]  
Liu Q., 2017, 2017 26 INT C COMP
[10]  
Liu Q, 2016, I C NETWORK PROTOCOL