Selective Heavy Atom Effect Forming Photosensitizing Hot Spots in Double-Stranded DNA Matrix

被引:11
作者
Zhang, Xinfeng [1 ]
Hu, Hao [2 ]
Liu, Weiwei [1 ]
Wang, Yanying [2 ]
Liu, Juewen [3 ]
Wu, Peng [2 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[2] Sichuan Univ, Analyt & Testing Ctr, Chengdu 610064, Peoples R China
[3] Univ Waterloo, Waterloo Inst Nanotechnol, Dept Chem, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金;
关键词
SINGLET OXYGEN GENERATION; THYMINE BASE-PAIRS; GREEN I COMPLEX; ETHIDIUM-BROMIDE; BINDING; INTERCALATION; OXIDATION; LIGAND; IONS;
D O I
10.1021/acs.jpclett.1c02809
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triplet exciton formation is essential for photosensitizationbased photochemistry and photobiology. The heavy atom effect (HAE), in the form of either external or internal mode, is a basic mechanism for increasing the triplet exciton yield of photosensitizers. Herein, we report a new HAE mode by noncovalent cohosting of heavy atoms and photosensitizers in a doublestranded DNA (dsDNA) matrix. With dsDNA bearing several thymine (T) or cytosine (C) mismatches, heavy atoms (e.g., Hg2+ or Ag+) and dsDNA-staining dyes (photosensitizers) were spatially adjoined in close proximity, thus resulting in enhanced phosphorescence and O-1(2) generation from the photosensitizers. The dsDNA-hosted HAE provides highly selective recognition for the heavy atoms, which is not applicable in either the external or the internal mode. Considering the simpleness and efficiency of the spatially adjoined HAE, as well as the functionality of DNA, the proposed HAE mode is appealing for various singlet oxygen- and phosphorescence-related applications.
引用
收藏
页码:9205 / 9212
页数:8
相关论文
共 45 条
[1]   Cyanine dye-DNA interactions: Intercalation, groove binding, and aggregation [J].
Armitage, BA .
DNA BINDERS AND RELATED SUBJECTS, 2005, 253 :55-76
[2]   External Heavy-Atom Effect on the Prompt and Delayed Fluorescence of [70]Fullerenes [J].
Baleizao, Carlos ;
Berberan-Santos, Mario N. .
CHEMPHYSCHEM, 2010, 11 (14) :3133-3140
[3]   External heavy-atom effect on fluorescence kinetics [J].
Berberan-Santos, MN .
PHYSCHEMCOMM, 2000, (1-14) :1DUMMY
[4]  
Bolton O, 2011, NAT CHEM, V3, P205, DOI [10.1038/nchem.984, 10.1038/NCHEM.984]
[5]   Phosphorescent dyes for organic light-emitting diodes [J].
Chou, Pi-Tai ;
Chi, Yun .
CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (02) :380-395
[6]   Metal-enhanced ethidium bromide emission: Application to dsDNA detection [J].
Dragan, A. I. ;
Bishop, E. S. ;
Strouse, R. J. ;
Casas-Finet, J. R. ;
Schenerman, M. A. ;
Geddes, C. D. .
CHEMICAL PHYSICS LETTERS, 2009, 480 (4-6) :296-299
[7]   Phosphorescence sensitization via heavy-atom effects in d10 complexes [J].
Elbjeirami, Oussama ;
Rawashdeh-Omary, Manal A. ;
Omary, Mohammad A. .
RESEARCH ON CHEMICAL INTERMEDIATES, 2011, 37 (07) :691-703
[8]   Photostable Iodinated Silica/Porphyrin Hybrid Nanoparticles with Heavy-Atom Effect for Wide-Field Photodynamic/Photothermal Therapy Using Single Light Source [J].
Hayashi, Koichiro ;
Nakamura, Michihiro ;
Miki, Hirokazu ;
Ozaki, Shuji ;
Abe, Masahiro ;
Matsumoto, Toshio ;
Kori, Toshinari ;
Ishimura, Kazunori .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (04) :503-513
[9]   Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy [J].
He, Chunbai ;
Duan, Xiaopin ;
Guo, Nining ;
Chan, Christina ;
Poon, Christopher ;
Weichselbaum, Ralph R. ;
Lin, Wenbin .
NATURE COMMUNICATIONS, 2016, 7
[10]  
He JJ, 2016, NAT METHODS, V13, P263, DOI [10.1038/nmeth.3735, 10.1038/NMETH.3735]