Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions

被引:1
作者
Kalsoom, Humaira [1 ]
Latif, Muhammad Amer [2 ]
Idrees, Muhammad [3 ]
Arif, Muhammad [4 ]
Salleh, Zabidin [5 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Faisal Univ, Dept Basic Sci, Al Hufuf 31982, Al Hasa, Saudi Arabia
[3] Zhejiang Univ, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[4] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Pakistan
[5] Univ Malaysia Terengganu, Dept Math, Fac Ocean Engn Technol & Informat, Terengganu 21030, Malaysia
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 12期
关键词
quantum calculus; quantum Hermite-Hadamard inequality; higher order generalized preinvex mapping; q(kappa; 1); 2)-derivatives; 2)-integrals; INTEGRAL-INEQUALITIES; CONVEX; CONVERGENCE;
D O I
10.3934/math.2021769
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In accordance with the quantum calculus, the quantum Hermite-Hadamard type inequalities shown in recent findings provide improvements to quantum Hermite-Hadamard type inequalities. We acquire a new q(kappa 1)-integral and q(kappa 2)-integral identities, then employing these identities, we establish new quantum Hermite-Hadamard q(kappa 1)-integral and q(kappa 2)-integral type inequalities through generalized higher-order strongly preinvex and quasi-preinvex functions. The claim of our study has been graphically supported, and some special cases are provided as well. Finally, we present a comprehensive application of the newly obtained key results. Our outcomes from these new generalizations can be applied to evaluate several mathematical problems relating to applications in the real world. These new results are significant for improving integrated symmetrical function approximations or functions of some symmetry degree.
引用
收藏
页码:13291 / 13310
页数:20
相关论文
共 32 条
[1]   q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions [J].
Alp, Necmettin ;
Sarikaya, Mehmet Zeki ;
Kunt, Mehmet ;
Iscan, Imdat .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) :193-203
[2]   Hermite-Hadamard integral inequalities on coordinated convex functions in quantum calculus [J].
Alqudah, Manar A. ;
Kashuri, Artion ;
Mohammed, Pshtiwan Othman ;
Abdeljawad, Thabet ;
Raees, Muhammad ;
Anwar, Matloob ;
Hamed, Y. S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[3]  
[Anonymous], 1910, Q. J. Pure Appl. Math
[4]   On q-Hermite-Hadamard inequalities for general convex functions [J].
Bermudo, S. ;
Korus, P. ;
Napoles Valdes, J. E. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) :364-374
[5]   Quantum Analogs of Ostrowski-Type Inequalities for Raina's Function correlated with Coordinated Generalized φ-Convex Functions [J].
Chu, Hong-Hu ;
Kalsoom, Humaira ;
Rashid, Saima ;
Idrees, Muhammad ;
Safdar, Farhat ;
Chu, Yu-Ming ;
Baleanu, Dumitru .
SYMMETRY-BASEL, 2020, 12 (02)
[6]   Some New Quantum Hermite-Hadamard-Type Estimates Within a Class of Generalized (s,m)-Preinvex Functions [J].
Deng, Yongping ;
Kalsoom, Humaira ;
Wu, Shanhe .
SYMMETRY-BASEL, 2019, 11 (10)
[7]   CERTAIN QUANTUM ESTIMATES ON THE PARAMETERIZED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS [J].
Du, Tingsong ;
Luo, Chunyan ;
Yu, Bo .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01) :201-228
[8]  
Ernst T., 2012, COMPREHENSIVE TREATM
[9]   Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels [J].
Fernandez, Arran ;
Mohammed, Pshtiwan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) :8414-8431
[10]  
Gauchman H, 2004, COMPUT MATH APPL, V47, P281, DOI [10.1016/S0898-1221(04)90025-9, 10.1016/S0898-1221(04)00012-4]