c-MYC-Independent Nuclear Reprogramming Favors Cardiogenic Potential of Induced Pluripotent Stem Cells

被引:59
作者
Martinez-Fernandez, Almudena [1 ,2 ,3 ,4 ,5 ]
Nelson, Timothy J. [1 ,2 ,3 ,4 ,5 ]
Ikeda, Yasuhiro [1 ,2 ,3 ,4 ,5 ]
Terzic, Andre [1 ,2 ,3 ,4 ,5 ]
机构
[1] Mayo Clin, Marriott Heart Dis Res Program, Div Cardiovasc Dis, Dept Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Mol Pharmacol, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Expt Therapeut, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Med Genet, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Mol Med, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
Cardiac; Induced Pluripotent Stem Cells; iPS; Differentiation; Heart; Oncogene; CARDIAC MYOCYTES; GENERATION; MOUSE; FIBROBLASTS; EXPRESSION; PROGENITORS; STRATEGIES; COMPLEX; REPAIR;
D O I
10.1007/s12265-009-9150-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Induced pluripotent stem cell (iPS) technology has launched a new platform in regenerative medicine aimed at deriving unlimited replacement tissue from autologous sources through somatic cell reprogramming using stemness factor sets. In this way, authentic cardiomyocytes have been obtained from iPS and recently demonstrated in proof-of-principle studies to repair infarcted heart. Optimizing the cardiogenic potential of iPS progeny would ensure a maximized yield of bioengineered cardiac tissue. Here, we reprogrammed fibroblasts in the presence or absence of c-MYC to determine if the acquired cardiogenicity is sensitive to the method of nuclear reprogramming. Using lentiviral constructs that expressed stemness factors SOX2, OCT4, and KLF4 with or without c-MYC, iPS clones generated through fibroblast reprogramming demonstrated indistinguishable characteristics for 5 days of differentiation with similar cell morphology, growth rates, and chimeric embryo integration. However, four-factor c-MYC-dependent nuclear reprogramming produced iPS progeny that consistently prolonged the expression of pluripotent Oct4 and Fgf4 genes and repressed cardiac differentiation. In contrast, three-factor c-MYC-less iPS clones efficiently upregulated precardiac (CXCR4, Flk1, and Mesp1/2) and cardiac (Nkx2.5, Mef2c, and myocardin) gene expression patterns. In fact, three-factor iPS progeny demonstrated early and robust cardiogenesis during in vitro differentiation with consistent beating activity, sarcomere maturation, and rhythmical intracellular calcium dynamics. Thus, nuclear reprogramming independent of c-MYC enhances production of pluripotent stem cells with innate cardiogenic potential.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [21] Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells
    Bai, Chunyu
    Li, Xiangchen
    Gao, Yuhua
    Yuan, Ziao
    Hu, Pengfei
    Wang, Hui
    Liu, Changqing
    Guan, Weijun
    Ma, Yuehui
    [J]. JOURNAL OF PINEAL RESEARCH, 2016, 61 (02) : 154 - 167
  • [22] Reprogramming of mouse renal tubular epithelial cells to induced pluripotent stem cells
    Wang, Wei-Wei
    Wang, Wei
    Jiang, Yan
    Han, Guo-Feng
    Lu, Shi
    Li, Gangqiang
    Zhang, Jinyuan
    [J]. CYTOTHERAPY, 2013, 15 (05) : 578 - 585
  • [23] Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming
    Fort, Alexandre
    Yamada, Daisuke
    Hashimoto, Kosuke
    Koseki, Haruhiko
    Carninci, Piero
    [J]. CELL CYCLE, 2015, 14 (08) : 1148 - 1155
  • [24] Reprogramming of Postnatal Neurons into Induced Pluripotent Stem Cells by Defined Factors
    Kim, Jongpil
    Lengner, Christopher J.
    Kirak, Oktay
    Hanna, Jacob
    Cassady, John P.
    Lodato, Michael A.
    Wu, Su
    Faddah, Dina A.
    Steine, Eveline J.
    Gao, Qing
    Fu, Dongdong
    Dawlaty, Meelad
    Jaenisch, Rudolf
    [J]. STEM CELLS, 2011, 29 (06) : 992 - 1000
  • [25] A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells
    Bhutani, Nidhi
    Decker, Matthew N.
    Brady, Jennifer J.
    Bussat, Rose T.
    Burns, David M.
    Corbel, Stephane Y.
    Blau, Helen M.
    [J]. FASEB JOURNAL, 2013, 27 (03) : 1107 - 1113
  • [26] Induced pluripotent stem cells reprogramming: Epigenetics and applications in the regenerative medicine
    Sampaio Gomes, Katia Maria
    Costa, Ismael Cabral
    dos Santos, Jeniffer Farias
    Martins Dourado, Paulo Magno
    Forni, Maria Fernanda
    Batista Ferreira, Julio Cesar
    [J]. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA, 2017, 63 (02): : 180 - 189
  • [27] Ectopic expression of CITED2 prior to reprogramming, promotes and homogenises the conversion of somatic cells into induced pluripotent stem cells
    Charneca, Joao
    Matias, Ana Catarina
    Escapa, Ana Luisa
    Fernandes, Catarina
    Alves, Andre
    Santos, Joao M. A.
    Nascimento, Rita
    Braganca, Jose
    [J]. EXPERIMENTAL CELL RESEARCH, 2017, 358 (02) : 290 - 300
  • [28] Cellular Ontogeny and Hierarchy Influence the Reprogramming Efficiency of Human B Cells into Induced Pluripotent Stem Cells
    Munoz-Lopez, Alvaro
    van Roon, Eddy. H. J.
    Romero-Moya, Damia
    Lopez-Millan, Belen
    Stam, Ronald W.
    Colomer, Dolors
    Nakanishi, Mahito
    Bueno, Clara
    Menendez, Pablo
    [J]. STEM CELLS, 2016, 34 (03) : 581 - 587
  • [29] Single Transcription Factor Reprogramming of Hair Follicle Dermal Papilla Cells to Induced Pluripotent Stem Cells
    Tsai, Su-Yi
    Bouwman, Britta Am
    Ang, Yen-Sin
    Kim, Soo Jeong
    Lee, Dung-Fang
    Lemischka, Ihor R.
    Rendl, Michael
    [J]. STEM CELLS, 2011, 29 (06) : 964 - 971
  • [30] Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells
    Bhise, Nupura S.
    Wahlin, Karl J.
    Zack, Donald J.
    Green, Jordan J.
    [J]. INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 : 4641 - 4658