Synergy of Inorganic Fillers in Composite Thermoplastic Polymer/Ionic Liquid/LiTFSI Electrolytes

被引:18
作者
Gonzalez, F. [1 ]
Garcia-Calvo, O. [2 ]
Tiemblo, P. [1 ]
Garcia, N. [1 ]
Fedeli, E. [2 ]
Thieu, T. [2 ]
Urdampilleta, I [2 ]
Kvasha, A. [2 ]
机构
[1] CSIC, ICTP, E-28006 Madrid, Spain
[2] Basque Res & Technol Alliance, CIDETEC, Donostia San Sebastian 20014, Spain
关键词
STATE LITHIUM BATTERIES; IONIC-CONDUCTIVITY; ELECTROCHEMICAL PROPERTIES; POLY(ETHYLENE OXIDE); TETRAGONAL LI7LA3ZR2O12; SEPIOLITE NANOFIBERS; TRANSPORT-PROPERTIES; HYBRID ELECTROLYTES; SOLID ELECTROLYTES; NANOPARTICLES;
D O I
10.1149/1945-7111/ab6bc1
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The development of novel solid electrolytes, which can be processed using solvent-free methods, is one of the keys for successful industrialization of solid state batteries and their further implementation in electrical vehicles. Here, we study thermoplastic solid state electrolytes based on polyethylene oxide (PEO), 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR 14 TFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and two inorganic fillers with different morphology and nature (modified sepiolite (TPGS-S) and garnet-type Li7La3Zr1.75N0.25O12 (LLZNO) prepared by solvent free extrusion method. Several thermoplastic polymer electrolytes (TPEs) are prepared and comprehensively studied. Composite thermoplastic electrolyte TPE-S10G10 containing 10 wt% of TPGS-S and 10 wt% of LLZNO fillers shows the best electrochemical performance in Li-LiFePO(4 )solid state batteries operating under 0.2C/0.5D cycling conditions at 60 degrees C. Solid state cell with TPE-S10G10 electrolyte retains 80% of initial discharge capacity after 540 cycles. Thus, a synergetic effect of using two different fillers, which can be exploited during the development of TPEs, is clearly demonstrated. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited.
引用
收藏
页数:9
相关论文
共 45 条
[1]   POLYMER SOLID ELECTROLYTES - AN OVERVIEW [J].
ARMAND, M .
SOLID STATE IONICS, 1983, 9-10 (DEC) :745-754
[2]   Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2046-2052
[3]   Peculiarities of ion transport in confined-in-ceramics concentrated polymer electrolytes [J].
Blanga, R. ;
Berman, M. ;
Biton, M. ;
Tariq, F. ;
Yufit, V. ;
Gladkich, A. ;
Greenbaum, S. G. ;
Brandon, N. ;
Golodnitsky, D. .
ELECTROCHIMICA ACTA, 2016, 208 :71-79
[4]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[5]  
Cheng X.-B., 2019, CHEM, V5, P1, DOI DOI 10.1016/J.CHEMPR.2018.12.021
[6]   Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix [J].
Choi, Jeong-Hee ;
Lee, Chul-Ho ;
Yu, Ji-Hyun ;
Doh, Chil-Hoon ;
Lee, Sang-Min .
JOURNAL OF POWER SOURCES, 2015, 274 :458-463
[7]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[8]   Trends in polymer electrolytes for secondary lithium batteries [J].
Dias, FB ;
Plomp, L ;
Veldhuis, JBJ .
JOURNAL OF POWER SOURCES, 2000, 88 (02) :169-191
[9]   Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries [J].
Falco, Marisa ;
Ferrari, Stefania ;
Appetecchi, Giovanni Battista ;
Gerbaldi, Claudio .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2019, 4 (04) :850-871
[10]   UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries [J].
Falco, Marisa ;
Castro, Laurent ;
Nair, Jijeesh Ravi ;
Bella, Federico ;
Barde, Fanny ;
Meligrana, Giuseppina ;
Gerbaldi, Claudio .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) :1600-1607