Global Well-Posedness for the 2-D Inhomogeneous Incompressible Navier-Stokes System with Large Initial Data in Critical Spaces

被引:22
作者
Abidi, Hammadi [1 ]
Gui, Guilong [2 ,3 ]
机构
[1] Univ Tunis El Manar, Dept Math, Fac Sci Tunis, Tunis 2092, Tunisia
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[3] Northwest Univ, Sch Math, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
EQUATIONS; DENSITY; FLUIDS;
D O I
10.1007/s00205-021-01710-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Without any smallness assumption, we prove the global unique solvability of the 2-D incompressible inhomogeneous Navier-Stokes equations with initial data in the critical Besov space, which is almost the energy space in the sense that they have the same scaling in terms of this 2-D system.
引用
收藏
页码:1533 / 1570
页数:38
相关论文
共 25 条
[1]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[2]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[3]   On the global well-posedness of 2-D inhomogeneous incompressible Nayier Stokes system with variable viscous coefficient [J].
Abidi, Hammadi ;
Zhang, Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3755-3802
[4]   On the Wellposedness of Three-Dimensional Inhomogeneous Navier-Stokes Equations in the Critical Spaces [J].
Abidi, Hammadi ;
Gui, Guilong ;
Zhang, Ping .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (01) :189-230
[5]  
Bahouri H., 2010, FOURIER ANAL NONLINE
[6]  
Bergh J., 1976, Interpolation spaces. An introduction
[7]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[8]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[9]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[10]  
Danchin R., 2006, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V15, P637, DOI 10.5802/afst.1133