Central suboptimal H∞ control design for nonlinear polynomial systems

被引:13
作者
Basin, Michael V. [1 ]
Shi, Peng [2 ,3 ,4 ]
Calderon-Alvarez, Dario [1 ]
机构
[1] Autonomous Univ Nuevo Leon, Dept Phys & Math Sci, San Nicolas De Los Garza 64450, Nuevo Leon, Mexico
[2] Univ Glamorgan, Dept Comp & Math Sci, Fac Adv Technol, Pontypridd CF37 1DL, M Glam, Wales
[3] Victoria Univ, Sch Sci & Engn, Melbourne, Vic 8001, Australia
[4] Univ S Australia, Sch Math & Stat, Mawson Lakes 5095, Australia
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
H-infinity control; nonlinear systems; OUTPUT-FEEDBACK CONTROL; TIME FUZZY-SYSTEMS; LINEAR-SYSTEMS; STOCHASTIC-SYSTEMS; DYNAMICAL-SYSTEMS; BILINEAR-SYSTEMS; STATE; DELAY; UNCERTAINTIES; H-2;
D O I
10.1080/00207721.2010.543491
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the central finite-dimensional H-infinity regulator for nonlinear polynomial systems, which is suboptimal for a given threshold gamma with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H-infinity control problem to the corresponding optimal H-2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H-2 and H-infinity Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H-infinity regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H-2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H-infinity regulator available for the corresponding linearised system.
引用
收藏
页码:801 / 808
页数:8
相关论文
共 34 条
[1]  
[Anonymous], INT J ROBUST NONLINE
[2]  
Basin M, 2008, INT J INNOV COMPUT I, V4, P2889
[3]   Optimal LQG controller for linear stochastic systems with unknown parameters [J].
Basin, Michael ;
Calderon-Alvarez, Dario .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (03) :293-302
[4]  
Basin M, 2008, INT J INNOV COMPUT I, V4, P313
[5]  
Bellman R. E., 1957, Dynamic programming. Princeton landmarks in mathematics
[6]   H-INFINITY CONTROL DESIGN IN BILINEAR-SYSTEMS - A TENSOR FORMAL SERIES APPROACH [J].
CHEN, BS ;
TENQCHEN, S .
SYSTEMS & CONTROL LETTERS, 1994, 23 (01) :15-26
[7]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[8]  
Fleming W. H., 2012, Deterministic and Stochastic Optimal Control
[9]   State-feedback H∞ control of nonlinear singularly perturbed systems [J].
Fridman, E .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2001, 11 (12) :1115-1125
[10]  
GAO HJ, 2002, INT J SYST SCI, V33, P885