Segal-Wilson approach to integrable systems and Riemann-Hilbert problems

被引:1
|
作者
dos Santos, Antonio F. [1 ]
dos Santos, Pedro F. [2 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Dept Matemat, P-1699 Lisbon, Portugal
[2] Univ Lisbon, Inst Super Tecn, Ctr Math Anal Geometry & Dynam Syst, P-1699 Lisbon, Portugal
关键词
Riemann-Hilbert problems; Integrable systems; Factorization; FACTORIZATION;
D O I
10.1016/j.jmaa.2016.05.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a theory is developed for obtaining families of solutions to the KdV equation by formulating a Riemann-Hilbert problem with an appropriate shift. The theory builds on the classical work of Segal and Wilson [17] in which families of solutions are indexed on closed subspaces W of a space of functions on the unit circle admitting a direct sum decomposition H = H+ circle plus H-(H+, H- are subspaces of functions holomorphic respectively inside and outside the unit disk). The theory developed in this paper lends itself easily to obtaining explicit solutions. Examples where the subspace W can be associated to soliton type solutions are considered. More complex systems where singularities and Riemann surfaces play a role are also presented. In the last section the connection of our results to the tau-function is analyzed. The theory developed in this paper can easily be applied to other integrable systems and, eventually, to discrete integrable systems. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:797 / 816
页数:20
相关论文
共 50 条
  • [1] Lax Equations, Singularities and Riemann-Hilbert Problems
    dos Santos, Antonio F.
    dos Santos, Pedro F.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 203 - 229
  • [2] Factorization in a torus and Riemann-Hilbert problems
    Camara, M. C.
    Malheiro, M. T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 343 - 363
  • [3] Matrix Riemann-Hilbert problems and factorization on Riemann surfaces
    Camara, M. C.
    dos Santos, A. F.
    dos Santos, Pedro F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 228 - 254
  • [4] Riemann-Hilbert Problems, Polynomial Lax Pairs, Integrable Equations and Their Soliton Solutions
    Gerdjikov, Vladimir Stefanov
    Stefanov, Aleksander Aleksiev
    SYMMETRY-BASEL, 2023, 15 (10):
  • [5] Riemann-Hilbert Problems, Toeplitz Operators and Q-Classes
    Camara, M. C.
    Malheiro, M. T.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 80 (02) : 239 - 264
  • [6] On Riemann-Hilbert Problems in Circle Packing
    Elias Wegert
    David Bauer
    Computational Methods and Function Theory, 2009, 9 (2) : 609 - 632
  • [7] Riemann-Hilbert problems in Clifford analysis
    Bernstein, S
    CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 1 - 8
  • [8] A Riemann-Hilbert approach to the Akhiezer polynomials
    Chen, Yang
    Its, Alexander R.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1867): : 973 - 1003
  • [9] Riemann-Hilbert problems with lots of discrete spectrum
    Miller, Peter D.
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 163 - 181
  • [10] Solving Riemann-Hilbert problems with meromorphic functions
    Kucerovsky, Dan
    Sarraf, Aydin
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 117 - 130