Lipschitz estimates for systems with ellipticity conditions at infinity

被引:80
|
作者
Eleuteri, Michela [1 ]
Marcellini, Paolo [1 ]
Mascolo, Elvira [1 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Elliptic systems; Local minimizers; Local Lipschitz continuity; p; q-growth; Variable exponents; EVERYWHERE-REGULARITY; MINIMIZERS; FUNCTIONALS; EXISTENCE; INTEGRALS; EQUATIONS; CALCULUS;
D O I
10.1007/s10231-015-0529-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the general vector-valued case N >= 1, we prove the Lipschitz continuity of local minimizers to some integrals of the calculus of variations of the form integral(Omega) g(x, vertical bar Du vertical bar) dx, with p, q-growth conditions only for vertical bar Du vertical bar -> +infinity and without further structure conditions on the integrand g = g( x, vertical bar Du vertical bar). We apply the regularity results to weak solutions to nonlinear elliptic systems of the form Sigma(n)(i=1) partial derivative/partial derivative x(i) a(i)(alpha) (x, Du) = 0, alpha = 1, 2, . . . , N.
引用
收藏
页码:1575 / 1603
页数:29
相关论文
共 50 条
  • [1] Lipschitz estimates for systems with ellipticity conditions at infinity
    Michela Eleuteri
    Paolo Marcellini
    Elvira Mascolo
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1575 - 1603
  • [2] LINEARIZATION AT INFINITY AND LIPSCHITZ ESTIMATES FOR CERTAIN PROBLEMS IN THE CALCULUS OF VARIATIONS
    CHIPOT, M
    EVANS, LC
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 102 : 291 - 303
  • [3] Lipschitz Bounds and Nonuniform Ellipticity
    Beck, Lisa
    Mingione, Giuseppe
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) : 944 - 1034
  • [4] Uniform Lipschitz Estimates of Homogenization of Elliptic Systems in Divergence Form with Dini Conditions
    Dong, Rong
    Li, Dong-sheng
    Zhang, Hai-liang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2021, 37 (01): : 48 - 68
  • [5] Uniform Lipschitz Estimates of Homogenization of Elliptic Systems in Divergence Form with Dini Conditions
    Rong DONG
    Dong-sheng LI
    Hai-liang ZHANG
    ActaMathematicaeApplicataeSinica, 2021, 37 (01) : 48 - 68
  • [6] Uniform Lipschitz Estimates of Homogenization of Elliptic Systems in Divergence Form with Dini Conditions
    Rong Dong
    Dong-sheng Li
    Hai-liang Zhang
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 48 - 68
  • [7] Weighted estimates for elliptic systems on Lipschitz domains
    Shen, Zhongwei
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (03) : 1135 - 1154
  • [8] On Lipschitz conditions of infinite dimensional systems
    Xu, Xiang
    Liu, Lu
    Feng, Gang
    AUTOMATICA, 2020, 117
  • [9] Lipschitz continuity of Lipschitz-Killing curvature densities at infinity
    Dinh, Si Tiep
    Nguyen, Nhan
    SELECTA MATHEMATICA-NEW SERIES, 2025, 31 (02):
  • [10] Optimal Lipschitz extensions and the infinity laplacian
    Crandall M.G.
    Evans L.C.
    Gariepy R.F.
    Calculus of Variations and Partial Differential Equations, 2001, 13 (2) : 123 - 139