Predicting survival in head and neck squamous cell carcinoma from TP53 mutation

被引:23
作者
Masica, David L. [1 ]
Li, Shuli [2 ]
Douville, Christopher [1 ]
Manola, Judith [2 ]
Ferris, Robert L. [3 ]
Burtness, Barbara [4 ]
Forastiere, Arlene A. [5 ]
Koch, Wayne M. [6 ]
Chung, Christine H. [5 ]
Karchin, Rachel [1 ,5 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Inst Computat Med, Baltimore, MD 21218 USA
[2] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[3] Univ Pittsburgh, Sch Med, Dept Otolaryngol, Pittsburgh, PA USA
[4] Fox Chase Canc Ctr, Dept Med Oncol, Philadelphia, PA 19111 USA
[5] Johns Hopkins Univ, Sch Med, Dept Oncol, Baltimore, MD USA
[6] Johns Hopkins Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD USA
关键词
CHRONIC LYMPHOCYTIC-LEUKEMIA; PROGNOSTIC-SIGNIFICANCE; OVARIAN-CANCER; POOR SURVIVAL; DISEASE GENES; P53; GENE; VARIANTS; PROTEIN; EXPRESSION; PHENOTYPE;
D O I
10.1007/s00439-014-1470-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
For TP53-mutated head and neck squamous cell carcinomas (HNSCCs), the codon and specific amino acid sequence change resulting from a patient's mutation can be prognostic. Thus, developing a framework to predict patient survival for specific mutations in TP53 would be valuable. There are many bioinformatics and functional methods for predicting the phenotypic impact of genetic variation, but their overall clinical value remains unclear. Here, we assess the ability of 15 different methods to predict HNSCC patient survival from TP53 mutation, using TP53 mutation and clinical data from patients enrolled in E4393 by the Eastern Cooperative Oncology Group (ECOG), which investigated whether TP53 mutations in surgical margins were predictive of disease recurrence. These methods include: server-based computational tools SIFT, PolyPhen-2, and Align-GVGD; our in-house POSE and VEST algorithms; the rules devised in Poeta et al. with and without considerations for splice-site mutations; location of mutation in the DNA-bound TP53 protein structure; and a functional assay measuring WAF1 transactivation in TP53-mutated yeast. We assessed method performance using overall survival (OS) and progression-free survival (PFS) from 420 HNSCC patients, of whom 224 had TP53 mutations. Each mutation was categorized as "disruptive" or "non-disruptive". For each method, we compared the outcome between the disruptive group vs. the non-disruptive group. The rules devised by Poeta et al. with or without our splice-site modification were observed to be superior to others. While the differences in OS (disruptive vs. non-disruptive) appear to be marginally significant (Poeta rules + splice rules, P = 0.089; Poeta rules, P = 0.053), both algorithms identified the disruptive group as having significantly worse PFS outcome (Poeta rules + splice rules, P = 0.011; Poeta rules, P = 0.027). In general, prognostic performance was low among assessed methods. Further studies are required to develop and validate methods that can predict functional and clinical significance of TP53 mutations in HNSCC patients.
引用
收藏
页码:497 / 507
页数:11
相关论文
共 57 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary [J].
Ahmed, Ashour Ahmed ;
Etemadmoghadam, Dariush ;
Temple, Jillian ;
Lynch, Andy G. ;
Riad, Mohamed ;
Sharma, Raghwa ;
Stewart, Colin ;
Fereday, Sian ;
Caldas, Carlos ;
DeFazio, Anna ;
Bowtell, David ;
Brenton, James D. .
JOURNAL OF PATHOLOGY, 2010, 221 (01) :49-56
[3]   Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival [J].
Bartel, Frank ;
Jung, Juliane ;
Boehnke, Anja ;
Gradhand, Elise ;
Zeng, Katharina ;
Thomssen, Christoph ;
Hauptmann, Steffen .
CLINICAL CANCER RESEARCH, 2008, 14 (01) :89-96
[4]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[5]   TP53 Mutants in the Tower of Babel of Cancer Progression [J].
Bisio, Alessandra ;
Ciribilli, Yari ;
Fronza, Gilberto ;
Inga, Alberto ;
Monti, Paola .
HUMAN MUTATION, 2014, 35 (06) :689-701
[6]   Screening BRCA1 and BRCA2 unclassified variants for splicing mutations using reverse transcription PCR on patient RNA and an ex vivo assay based on a splicing reporter minigene [J].
Bonnet, C. ;
Krieger, S. ;
Vezain, M. ;
Rousselin, A. ;
Tournier, I. ;
Martins, A. ;
Berthet, P. ;
Chevrier, A. ;
Dugast, C. ;
Layet, V. ;
Rossi, A. ;
Lidereau, R. ;
Frebourg, T. ;
Hardouin, A. ;
Tosi, M. .
JOURNAL OF MEDICAL GENETICS, 2008, 45 (07) :438-446
[7]  
Bradley Patrick J, 2007, Curr Opin Otolaryngol Head Neck Surg, V15, P74, DOI 10.1097/MOO.0b013e328058670f
[8]   Identifying Mendelian disease genes with the Variant Effect Scoring Tool [J].
Carter, Hannah ;
Douville, Christopher ;
Stenson, Peter D. ;
Cooper, David N. ;
Karchin, Rachel .
BMC GENOMICS, 2013, 14
[9]   Cancer-Specific High-Throughput Annotation of Somatic Mutations: Computational Prediction of Driver Missense Mutations [J].
Carter, Hannah ;
Chen, Sining ;
Isik, Leyla ;
Tyekucheva, Svitlana ;
Velculescu, Victor E. ;
Kinzler, Kenneth W. ;
Vogelstein, Bert ;
Karchin, Rachel .
CANCER RESEARCH, 2009, 69 (16) :6660-6667
[10]   Interpreting missense variants:: Comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR) [J].
Chan, Philip A. ;
Duraisamy, Sekhar ;
Miller, Peter J. ;
Newell, Joan A. ;
McBride, Carole ;
Bond, Jeffrey P. ;
Raevaara, Tiina ;
Ollila, Saara ;
Nystrom, Minna ;
Grimm, Andrew J. ;
Christodoulou, John ;
Oetting, William S. ;
Greenblatt, Marc S. .
HUMAN MUTATION, 2007, 28 (07) :683-693